四川省南部县2024年九年级数学第一学期开学质量检测模拟试题【含答案】_第1页
四川省南部县2024年九年级数学第一学期开学质量检测模拟试题【含答案】_第2页
四川省南部县2024年九年级数学第一学期开学质量检测模拟试题【含答案】_第3页
四川省南部县2024年九年级数学第一学期开学质量检测模拟试题【含答案】_第4页
四川省南部县2024年九年级数学第一学期开学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页四川省南部县2024年九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在中,,,高,则三角形的周长是()A.42 B.32 C.42或32 D.37或332、(4分)下列运算正确的是()A.+= B.=2 C.•= D.÷=23、(4分)实数a、b在数轴上对应的位置如图所示,则等于A. B. C. D.4、(4分)下列函数的图象不经过第一象限,且y随x的增大而减小的是()A. B. C. D.5、(4分)下列式子中,属于最简二次根式的是()A. B. C. D.6、(4分)如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是()A.B.C.D.7、(4分)若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c的值是(

)A.-1 B.1 C.0 D.不能确定8、(4分)如图,已知四边形ABCD的对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知,,则__________.10、(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为__________度.11、(4分)关于x的一元二次方程无实数根,则m的取值范围是______.12、(4分)若分式的值为0,则__.13、(4分)一组数据为1,2,3,4,5,6,则这组数据的中位数是______.三、解答题(本大题共5个小题,共48分)14、(12分)解方程:x2﹣6x﹣4=1.15、(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.16、(8分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?17、(10分)如图,点,在上,,,,试判断与有怎样的数量和位置关系,并说明理由.18、(10分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在函数y=中,自变量x的取值范围是_________.20、(4分)如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm)随时间x(s)变化的关系图象,则a的值是__21、(4分)若,是一元二次方程的两个实数根,则__________.22、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.23、(4分)关于的一元二次方程有两个不相等的实数根,则实数的取值范围为__________.二、解答题(本大题共3个小题,共30分)24、(8分)定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.(1)如图,在平面直角坐标系中,点为坐标原点,以点为圆心,5为半径作圆,交轴的负半轴于点,求过点的圆的切线的解析式;(2)若抛物线()与直线()相切于点,求直线的解析式;(3)若函数的图象与直线相切,且当时,的最小值为,求的值.25、(10分)如图,△ABC中,点P是AC边上一个动点,过P作直线EF∥BC,交∠ACB的平分线于点E,交∠ACB的外角∠ACD平分线于点F.(1)请说明:PE=PF;(2)当点P在AC边上运动到何处时,四边形AECF是矩形?为什么?26、(12分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

在Rt△ABD中,利用勾股定理可求出BD的长度,在Rt△ACD中,利用勾股定理可求出CD的长度,由BC=BD+CD或BC=BD-CD可求出BC的长度,再将三角形三边长度相加即可得出△ABC的周长.【详解】在Rt△ABD中,,在Rt△ACD中,,∴BC=BD+CD=14或BC=BD-CD=4,

∴C△ABC=AB+BC+AC=15+14+13=42或C△ABC=AB+BC+AC=15+4+13=1.

故选:C.本题考查了勾股定理以及三角形的周长,利用勾股定理结合图形求出BC边的长度是解题的关键.在解本题时应分两种情况进行讨论,以防遗漏.2、D【解析】分析:利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.详解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、A【解析】

直接利用数轴得出,,进而化简得出答案.【详解】解:由数轴可得:,,则原式.故选A.此题主要考查了二次根式的性质与化简,正确得出各项的符号是解题关键.4、A【解析】

分别分析各个一次函数图象的位置.【详解】A.,图象经过第二、四象限,且y随x的增大而减小;B.,图象经过第一、二、三象限;C.,图象经过第一、二、四象限;D.,图象经过第一、三、四象限;所以,只有选项A符合要求.故选A本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.5、D【解析】

直接利用最简二次根式的定义分析得出答案.【详解】解:、,故此选项错误;、,故此选项错误;、,故此选项错误;、是最简二次根式,故此选项正确.故选:.此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.6、A【解析】

连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC与BD相交于O,

在▱ABCD中,OA=OC,OB=OD,

要使四边形AECF为平行四边形,只需证明得到OE=OF即可;

A、AF=EF无法证明得到OE=OF,故本选项正确.

B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;

C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;

D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;

故选:A.本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.7、C【解析】

将x=-1代入方程,就可求出a-b+c的值.【详解】解:将x=-1代入方程得,a-b+c=0故答案为:C本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8、A【解析】试题分析:如图:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF∥BD,GH∥BD,EF=BD,GH=BD,EH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∵AC=BD,EF=BD,EH=AC,∴EF=EH,∴平行四边形EFGH是菱形.故选B.考点:1.三角形中位线定理;2.菱形的判定.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

把x与y代入计算即可求出xy的值【详解】解:当,时,∴;故答案为:1.此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.10、45°【解析】

求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.【详解】∵∠ACD=3∠BCD,∠ACB=90°,

∴∠ACD=67.5°,∠BCD=22.5°,

∵CD⊥AB,

∴∠CDB=90°,

∴∠B=180°−90°−22.5°=67.5°,

∵∠ACB=90°,E是斜边AB的中点,

∴BE=CE,

∴∠BCE=∠B=67.5°,

∴∠ECD=∠BCE−∠BCD=67.5°−22.5°=45°.本题考查三角形内角和定理和直角三角形斜边上中线性质,解题的关键是掌握三角形内角和定理和直角三角形斜边上中线性质.11、m>2【解析】

利用一元二次方程的定义和判别式的意义得到m-1≠0且△=(-2)2-4(m-1)<0,然后求出两不等式的公共部分即可.【详解】解:∵要保证方程为二次方程故m-1≠0得m≠1,又∵方程无实数根,∴△=b2-4ac=(-2)2-4(m-1)<0,解得m>2,故答案为m>2.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12、2【解析】

根据分式的值为零的条件即可求出答案.【详解】解:由题意可知:,解得:,故答案为:2;本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.13、3.5【解析】

将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【详解】根据中位数的概念,可知这组数据的中位数为.本题考查中位数的概念.三、解答题(本大题共5个小题,共48分)14、x1=3+,x2=3﹣.【解析】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.15、y=2x﹣1.【解析】

设一次函数的解析式是:y=kx+b,把(3,-5)与(-4,9)代入即得到一个关于k,b的方程组,解方程组即可求解.【详解】解:设一次函数为因为它的图象经过,所以解得:所以这个一次函数为本题考查了待定系数法求函数的解析式,正确解方程组是关键.16、(1)当x≥3时,y与x之间的函数关系式是y=x+;(2)乘车13km应付车费21元;(3)出租车行驶了28千米.【解析】试题分析:(1)由于x≥3时,直线过点(3,8)、(8,15),设解析式为设y=kx+b,利用待定系数法即可确定解析式;(2)把x=13代入解析式即可求得;(3)将y=42代入到(1)中所求的解析式,即可求出x.解:(1)当x≥3时,设解析式为设y=kx+b,∵一次函数的图象过B(3,7)、C(8,14),∴,解得,∴当x≥3时,y与x之间的函数关系式是y=x+;(2)当x=13时,y=×13+=21,答:乘车13km应付车费21元;(3)将y=42代入y=x+,得42=x+,解得x=28,即出租车行驶了28千米.17、详见解析【解析】

根据平行线的性质得到,由得到,推出,根据全等三角形的性质得到,,由平行线的判定即可得到结论.【详解】解:与平行且相等,理由:因为,所以.因为,所以.又因为,所以.所以,.所以.本题考查平行线的判定与性质,全等三角形的判定与性质.熟练掌握性质定理和判定定理是解题的关键.注意数形结合思想的应用.18、(1)见解析(2)75°(3)3人【解析】

(1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答(2)用4册的人数除以总人数乘以360°即可解答(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【详解】(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24-5-6-4=9(人)则条形统计图为:(2)=75°(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据一、填空题(本大题共5个小题,每小题4分,共20分)19、x≤1【解析】

根据二次根式的性质列出不等式,求出不等式的取值范围即可.【详解】若使函数y=有意义,∴1−x≥0,即x≤1.故答案为x≤1.本题主要考查了函数自变量取值范围的知识点,注意:二次根式中的被开方数必须是非负数,否则二次根式无意义.20、【解析】

过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,BD=,在Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm.∴AD=a,∴DE·AD=a,∴DE=2.当点F从D到B时,用s,∴BD=.Rt△DBE中,BE=.∵ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a=2+(a-1),解得a=.此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;21、【解析】

根据根与系数的关系可得出,将其代入中即可求出结论.【详解】解:∵x1,x2是一元二次方程x2+x-2=0的两个实数根,

∴,

∴.

故答案为:.本题考查了根与系数的关系,牢记两根之积等于是解题的关键.22、x>﹣3x≤﹣【解析】当x>−3时,2x+6>0;解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.故答案为x>−3;x⩽﹣.23、m<【解析】

根据一元二次方程有两个不相等的实数根可得△=(-3)2−4m>0,求出m的取值范围即可.【详解】解:∵一元二次方程有两个不相等的实数根,∴△=(-3)2−4m>0,∴m<,故答案为:m<.本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根,此题难度不大.二、解答题(本大题共3个小题,共30分)24、(1);(2);(3)1或【解析】

(1)连接,由、可求,即.因为过点的切线,故有,再加公共角,可证,由对应边成比例可求的长,进而得点坐标,即可求直线解析式.(2)分别把点代入抛物线和直线解析式,求得抛物线解析式为,直线解析式可消去得.由于直线与抛物线相切(只有一个交点),故联立解析式得到关于的方程有两个相等的实数根,即△,即求得的值.(3)因为二次函数图象与直线相切,所以把二次函数和直线解析式联立,得到关于的方程有两个相等是实数根,即△,整理得式子,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线.分类讨论对称轴在左侧、中间、右侧三种情况,画出图形得:①当对称轴在左侧即时,由图象可知时随的增大而增大,所以时取得最小值,把、代入得到关于的方程,方程无解;②当对称轴在范围内时,时即取得最小值,得方程,解得:;③当对称轴在2的右侧即时,由图象可知时随的增大而减小,所以时取得最小值,把、代入即求得的值.【详解】解:(1)如图1,连接,记过点的切线交轴于点,,,设直线解析式为:,解得:过点的的切线的解析式为;(2)抛物线经过点,解得:抛物线解析式:直线经过点,可得:直线解析式为:直线与抛物线相切关于的方程有两个相等的实数根方程整理得:△解得:直线解析式为;(3)函数的图象与直线相切关于的方程有两个相等的实数根方程整理得:△整理得:,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线当时,的最小值为①如图2,当时,在时随的增大而增大时,取得最小值,方程无解;②如图3,当时,时,取得最小值,解得:;③如图4,当时,在时随的增大而减小时,取得最小值,解得:,(舍去)综上所述,的值为1或.本题考查了圆的切线的性质,相似三角形的判定和性质,一元二次方程的解法及根与系数的关系,二次函数的图象与性质.第(3)题的解题关键是根据相切列得方程并得到含、的等式,转化为关于的二次函数,再根据画图讨论抛物线对称轴情况进行解题.25、(1)详见解析;(2)当点P在AC中点时,四边形AECF是矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论