四川省开江县2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】_第1页
四川省开江县2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】_第2页
四川省开江县2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】_第3页
四川省开江县2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】_第4页
四川省开江县2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页四川省开江县2024年九年级数学第一学期开学学业质量监测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有()A.1个 B.2个 C.3个 D.4个2、(4分)在平行四边形ABCD中,,.则平行四边形ABCD的周长是().A.16 B.13 C.10 D.83、(4分)用配方法解方程时,配方变形结果正确的是()A. B. C. D.4、(4分)下列等式成立的是()A. B. C. D.5、(4分)下列数据中不能作为直角三角形的三边长是()A.1、1、 B.5、12、13 C.3、5、7 D.6、8、106、(4分)如图,在中□ABCD中,点E、F分别在边AB、CD上移动,且AE=CF,则四边形DEBF不可能是()A.平行四边形 B.梯形 C.矩形 D.菱形7、(4分)如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个 B.3个 C.4个 D.5个8、(4分)一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8 B.9 C.10 D.11二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在中,,,以点为圆心,以任意长为半径作弧,分别交、于点、,再分别以点、为圆心,以大于的长为半径作弧,两弧在内交于点,连结并延长,交于点,则的长为____.10、(4分)如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;11、(4分)一次函数不经过第_________象限;12、(4分)如图,在中,是边上的中线,是上一点,且连结,并延长交于点,则_________.13、(4分)计算:=______________三、解答题(本大题共5个小题,共48分)14、(12分)如图,G是线段AB上一点,AC和DG相交于点E.(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.15、(8分)如图,在中,点D、E分别是边BC、AC的中点,过点A作交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当满足什么条件时,四边形图ADCF是菱形?为什么?16、(8分)化简并求值:,其中.17、(10分)用适当方法解方程:.18、(10分)化简并求值:,其中x=﹣1.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)对甲、乙两台机床生产的同一种零件进行抽样检测(抽查的零件个数相同),其平均数、方差的计算结果是:机床甲:,;机床乙:,.由此可知:____(填甲或乙)机床性能较好.20、(4分)观察以下等式:第1个等式:第2个等式:=1第3个等式:=1第4个等式:=1…按照以下规律,写出你猜出的第n个等式:______(用含n的等式表示).21、(4分)若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.22、(4分)已知空气的密度是0.001239,用科学记数法表示为________23、(4分)如图,某居民小区要一块一边靠墙的空地上建一个长方形花园,花园的中间用平行于的栅栏隔开,一边靠墙,其余部分用总长为米的栅栏围成且面积刚好等于平方米,求围成花园的宽为多少米?设米,由题意可列方程为______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.当t为何值时,四边形ABQP是矩形;当t为何值时,四边形AQCP是菱形.25、(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.26、(12分)如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B→C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S.S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.(1)求线段BF的长及a的值;(2)写出S与t的函数关系式,并补全该函数图象;(3)当t为多少时,△PBF的面积S为4.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行速度==60米/分;故①符合题意;设乙的速度为:x米/分,由题意可得:16×60=(16﹣4)x,解得x=80∴乙的速度为80米/分;∴乙走完全程的时间==30分,故②符合题意;由图可得:乙追上甲的时间为(16﹣4)=12分;故③符合题意;乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④符合题意;故正确的结论为:①②③④,故选:D.本题考查了一次函数的应用,明确题意,读懂函数图像,是解题的关键.2、A【解析】

根据平行四边形的性质:平行四边形的对边相等可得DC=5,AD=3,然后再求出周长即可.【详解】∵四边形ABCD是平行四边形,∵AB=CD,AD=BC,∵AB=5,BC=3,∴DC=5,AD=3,∴平行四边形ABCD的周长为:5+5+3+3=16,故选A.此题主要考查了平行四边形的性质,关键是掌握平行四边形的对边相等.3、C【解析】

根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.【详解】∵∴x2+6x=1,∴x2+6x+9=1+9,∴(x+3)2=10;故选:C.本题考查了配方法解一元二次方程,掌握配方法的步骤是解题的关键;配方法的一般步骤是:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4、B【解析】

根据二次根式的加减、乘除运算法则以及二次根式的性质解答即可.【详解】解:A.不是同类二次根式,故A错误;B.,故B正确;C.,故B错误;D.,故D错误.故答案为B.本题考查了二次根式的加减、乘除运算法则以及二次根式的性质,牢记并灵活运用运算法则和性质是解答本题的关键.5、C【解析】解:A、,能构成直角三角形,故选项错误;B、52+122=132,能构成直角三角形,故选项错误;C、32+52≠72,不能构成直角三角形,故选项正确;D、62+82=102,能构成直角三角形,故选项错误.故选C.6、B【解析】

由于在平行四边形ABCD中AB=CD,而AE=CF,由此可以得到BE=DF,根据平行四边形的判定方法即可判定其实平行四边形,所以不可能是梯形.【详解】解:∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,

又AE=CF,

∴BE=DF,

∴四边形BEDF是平行四边形,所以不可能是梯形.

故选:B.本题考查平行四边形的性质,注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形.7、C【解析】

根据等腰直角三角形的定义,由题意,应分两类情况讨论:当MN为直角边时和当MN为斜边时点P的位置的求法.【详解】当M运动到(-1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的P点;又当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有-x=-(2x+3),解得x=-3,所以点P坐标为(0,-3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有-x=-(2x+3),化简得-2x=-2x-3,这方程无解,所以这时不存在符合条件的P点;又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有-x=(2x+3),解得x=-,这时点P的坐标为(0,-).因此,符合条件的点P坐标是(0,0),(0,-),(0,-3),(0,1).故答案选C,本题主要采用分类讨论法,来求得符合条件的点P坐标.题中没有明确说明哪个边是直角边,哪条边是斜边,所以分情况说明,在证明时,注意点M的坐标表示方法以及坐标与线段长之间的转换.8、C【解析】

利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=1.故选C.熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】

根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,【详解】解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=1;故答案为:1.此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.10、60【解析】

先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.【详解】解:∵∠BAC=120°,AB=AC,∴∠C===30°,∵AC的垂直平分线交BC于D,∴AD=CD,∴∠C=∠CAD=30°,∵∠ADB是△ACD的外角,∴∠ADB=∠C+∠CAD=30°+30°=60°.故答案为60°.本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.11、三【解析】

根据一次函数的图像与性质即可得出答案.【详解】∵一次函数解析式为:y=-x+1其中k=-1<0,b=1>0∴函数图像经过一、二、四象限,不经过第三象限故答案为:三.本题考查的是一次函数的图像与性质,熟练掌握一次函数的图像与性质是解决本题的关键.12、1:8.【解析】

先过点D作GD∥EC交AB于G,由平行线分线段成比例可得BG=GE,再根据GD∥EC,得出AE=,最后根据AE:EB=:2EG,即可得出答案.【详解】过点D作GD∥EC交AB于G,∵AD是BC边上中线,∴,即BG=GE,又∵GD∥EC,∴,∴AE=,∴AE:EB=:2EG=1:8.故答案为:1:8.本题主要考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是求出AE、EB、EG之间的关系.13、2【解析】

先将二次根式化为最简,然后合并同类二次根式即可.【详解】解:原式=.故答案为:2.本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析.【解析】

(1)根据角平分线的作图方法作图即可;(2)由题意易证△ADE≌△CBF推出DE=BF.【详解】(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.(2)证明如下:∵AD∥BC,∴∠DAC=∠C.∵BF平分∠ABC,∴∠ABC=2∠FBC,又∵∠ABC=2∠ADG,∴∠D=∠FBC,在△ADE与△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF.本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.15、(1)见解析;(2)当△ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,理由见解析.【解析】

(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;

(2)利用直角三角形的性质结合菱形的判定方法得出即可.【详解】(1)证明:∵点D、E分别是边BC、AC的中点,

∴DE∥AB,BD=CD,

∵AF∥BC,

∴四边形ABDF是平行四边形,

∴AF=BD,则AF=DC,

∵AF∥BC,

∴四边形ADCF是平行四边形;

(2)解:当△ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,

理由:∵△ABC是直角三角形,且∠BAC=90°又∵点D是边BC的中点,

∴AD=DC,

∴平行四边形ADCF是菱形.本题考查平行四边形的判定与性质以及菱形的判定,熟练应用平行四边形的判定与性质是解题关键.16、,【解析】

首先进行化简,在代入计算即可.【详解】原式当时,原式本题主要考查根式的化简,注意根式的分母不等为0,这是必考题,必须掌握.17、,【解析】

利用分解因式法求解即可.【详解】解:原方程可化为:,∴或,解得:,.本题考查的是一元二次方程的解法,属于基础题型,熟练掌握分解因式的方法是解题的关键.18、2.【解析】试题分析:先将进行化简,再将x的值代入即可;试题解析:原式=﹣•(x﹣1)==,当x=﹣1时,原式=﹣2.一、填空题(本大题共5个小题,每小题4分,共20分)19、甲【解析】试题解析:∵S2甲<S2乙,∴甲机床的性能较好.点睛:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20、++×=1【解析】

观察前四个等式可得出第n个等式的前两项为及,对比前四个等式即可写出第n个等式,此题得解.【详解】解:观察前四个等式,可得出:第n个等式的前两项为及,∴第n个等式为故答案为:++×=1本题考查规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.21、-1【解析】

先提取公因式ab,整理后再把a+b的值代入计算即可.【详解】解:a+b=5时,原式=ab(a+b)=5ab=-10,解得:ab=-1.故答案为:-1.本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键,也是难点.22、1.239×10-3.【解析】

绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.001239=1.239×10-3故答案为:1.239×10-3.本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.23、【解析】

根据题意设AB=x米,则BC=(30-3x)m,利用矩形面积得出答案.【详解】解:设AB=x米,由题意可列方程为:x(30-3x)=1.故答案为:x(30-3x)=1.此题主要考查了由实际问题抽象出一元二次方程,正确表示出BC的长是解题关键.二、解答题(本大题共3个小题,共30分)24、当时,四边形ABQP为矩形;当时,四边形AQCP为菱形.

【解析】

当四边形ABQP是矩形时,,据此求得t的值;当四边形AQCP是菱形时,,列方程求得运动的时间t;【详解】由已知可得,,在矩形ABCD中,,,当时,四边形ABQP为矩形,,得故当时,四边形ABQP为矩形.由可知,四边形AQCP为平行四边形当时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得,故当时,四边形AQCP为菱形.本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.25、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论