2025届甘肃省武威市武威一中高二数学第一学期期末联考模拟试题含解析_第1页
2025届甘肃省武威市武威一中高二数学第一学期期末联考模拟试题含解析_第2页
2025届甘肃省武威市武威一中高二数学第一学期期末联考模拟试题含解析_第3页
2025届甘肃省武威市武威一中高二数学第一学期期末联考模拟试题含解析_第4页
2025届甘肃省武威市武威一中高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省武威市武威一中高二数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.当圆的圆心到直线的距离最大时,()A B.C. D.2.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27183.已知椭圆:的左、右焦点分别为,,点P是椭圆上的动点,,,则的最小值为()A. B.C D.4.设,直线与直线平行,则()A. B.C. D.5.等比数列的前项和为,若,则()A. B.8C.1或 D.或6.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.7.函数单调减区间是()A. B.C.和 D.8.口袋中装有大小形状相同的红球3个,白球3个,小明从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次取得白球的概率为()A.0.4 B.0.5C.0.6 D.0.759.已知在平面直角坐标系中,圆的方程为,直线过点且与直线垂直.若直线与圆交于两点,则的面积为A.1 B.C.2 D.10.已知等差数列的前项和为,若,,则()A. B.C. D.11.命题的否定是()A. B.C. D.12.已知为等差数列,为公差,若成等比数列,且,则数列的前项和为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且,则实数________________14.知函数,若函数有两个不同的零点,则实数的取值范围为_____________.15.在等比数列中,若,,则数列的公比为___________.16.圆关于y轴对称的圆的标准方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知关于的不等式的解集为.(1)求的值;(2)若,求的最小值,并求此时的值.18.(12分)已知直线过点,且其倾斜角是直线的倾斜角的(1)求直线的方程;(2)若直线与直线平行,且点到直线的距离是,求直线的方程19.(12分)椭圆的离心率为,设为坐标原点,为椭圆的左顶点,动直线过线段的中点,且与椭圆相交于、两点.已知当直线的倾斜角为时,(1)求椭圆的标准方程;(2)是否存在定直线,使得直线、分别与相交于、两点,且点总在以线段为直径的圆上,若存在,求出所有满足条件的直线的方程;若不存在,请说明理由20.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.21.(12分)已知函数,且)的图象经过点和

.(1)求实数,的值;(2)若,求数列前项和

.22.(10分)已知数列,,,为其前n项和,且满足.(1)求数列的通项公式;(2)设,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出圆心坐标和直线过定点,当圆心和定点的连线与直线垂直时满足题意,再利用两直线垂直,斜率乘积为-1求解即可.【详解】解:因为圆的圆心为,半径,又因为直线过定点A(-1,1),故当与直线垂直时,圆心到直线的距离最大,此时有,即,解得.故选:C.2、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.3、A【解析】由椭圆的定义可得;利用基本不等式,若,则,当且仅当时取等号.【详解】根据椭圆的定义可知,,即,因为,,所以,当且仅当,时等号成立.故选:A4、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C5、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.6、D【解析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【点睛】本题主要考查函数的图象变换,考查数形结合思想,属于中档题7、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B8、C【解析】求出第一次取得红球的事件、第一次取红球第二次取白球的事件概率,再利用条件概率公式计算作答.【详解】记“第一次取得红球”为事件A,“第二次取得白球”为事件B,则,,于是得,所以在第一次取得红球的条件下,第二次取得白球的概率为0.6.故选:C9、A【解析】∵圆的方程为,即,∴圆的圆心为,半径为2.∵直线过点且与直线垂直∴直线.∴圆心到直线的距离.∴直线被圆截得的弦长,又∵坐标原点到的距离为,∴的面积为.考点:1、直线与圆的位置关系;2、三角形的面积公式.10、B【解析】根据和可求得,结合等差数列通项公式可求得.【详解】设等差数列公差为,由得:;又,,.故选:B.11、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C12、C【解析】先利用已知条件得到,解出公差,得到通项公式,再代入数列,利用裂项相消法求和即可.【详解】因为成等比数列,,故,即,故,解得或(舍去),故,即,故的前项和为:.故选:C.【点睛】方法点睛:数列求和的方法:(1)倒序相加法:如果一个数列的前项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,利用向量的数量积的坐标运算即可.【详解】,则,解得故答案为:14、【解析】根据分段函数的性质,结合幂函数、一次函数的单调性判断零点的分布,进而求m的范围.【详解】由解析式知:在上为增函数且,在上,时为单调函数,时无零点,故要使有两个不同的零点,即两侧各有一个零点,所以在上必递减且,则,可得.故答案为:15、##【解析】求出等比数列的公比,利用定义可求得数列的公比.【详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.16、【解析】根据题意可得圆心坐标为,半径为1,利用平面直角坐标系点关于坐标轴对称特征可得所求的圆心坐标为,半径为1,进而得出结果.【详解】由题意知,圆的圆心坐标为,半径为1,设圆关于y轴对称的圆为,所以,半径为1,所以的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】(1)利用根与系数的关系,得到等式和不等式,最后求出的值;(2)化简函数的解析式,利用基本不等式可以求出函数的最小值.【小问1详解】由题意知:,解得【小问2详解】由(1)知,∴,由对勾函数单调性知在上单调递减,∴,即当,函数的最小值为18、(1);(2)或【解析】(1)先求得直线的倾斜角,由此求得直线的倾斜角和斜率,进而求得直线的方程;(2)设出直线的方程,根据点到直线的距离列方程,由此求解出直线的方程【详解】解(1)直线的倾斜角为,∴直线的倾斜角为,斜率为,又直线过点,∴直线的方程为,即;(2)设直线的方程为,则点到直线的距离,解得或∴直线的方程为或19、(1)(2)存在,且直线的方程为或【解析】(1)分析可知,,直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,利用弦长公式可求得的值,即可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆的方程联立,列出韦达定理,求出点、,由已知得出,求出的值,即可得出结论.【小问1详解】解:因为,则,,所以,椭圆的方程为,即,易知点,则点,当直线的倾斜角为时,直线的方程为,设点、,联立,可得,,由韦达定理可得,,所以,,解得,则,,因此,椭圆的标准方程为.【小问2详解】解:易知点,若直线与轴重合,则、为椭圆长轴的两个端点,不合乎题意.设直线的方程为,设点、,联立,可得,,由韦达定理可得,,直线的斜率为,直线的方程为,故点,同理可得点,,,由题意可得,解得或.因此,存在满足题设条件的直线,且直线的方程为或,点总在以线段为直径的圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.20、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.21、(1),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论