江苏省溧阳市2025届数学高三第一学期期末统考模拟试题含解析_第1页
江苏省溧阳市2025届数学高三第一学期期末统考模拟试题含解析_第2页
江苏省溧阳市2025届数学高三第一学期期末统考模拟试题含解析_第3页
江苏省溧阳市2025届数学高三第一学期期末统考模拟试题含解析_第4页
江苏省溧阳市2025届数学高三第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省溧阳市2025届数学高三第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.82.下列函数中,值域为的偶函数是()A. B. C. D.3.若是定义域为的奇函数,且,则A.的值域为 B.为周期函数,且6为其一个周期C.的图像关于对称 D.函数的零点有无穷多个4.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A. B. C. D.5.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.6.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A. B. C. D.7.已知命题若,则,则下列说法正确的是()A.命题是真命题B.命题的逆命题是真命题C.命题的否命题是“若,则”D.命题的逆否命题是“若,则”8.若复数是纯虚数,则()A.3 B.5 C. D.9.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.10.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种11.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米12.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知一组数据,1,0,,的方差为10,则________14.已知实数x,y满足(2x-y)2+4y15.已知复数对应的点位于第二象限,则实数的范围为______.16.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值.18.(12分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;(Ⅱ)从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;(Ⅲ)记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.19.(12分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为.己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛.决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜.Pi+4(i=4,3,2,…,4)表示甲总分为i时,最终甲获胜的概率.①写出P0,P8的值;②求决赛甲获胜的概率.20.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点,是上异于,的点,.(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.21.(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立.22.(10分)如图,在中,,,点在线段上.(1)若,求的长;(2)若,,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.2、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.3、D【解析】

运用函数的奇偶性定义,周期性定义,根据表达式判断即可.【详解】是定义域为的奇函数,则,,又,,即是以4为周期的函数,,所以函数的零点有无穷多个;因为,,令,则,即,所以的图象关于对称,由题意无法求出的值域,所以本题答案为D.【点睛】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.4、B【解析】

根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.5、D【解析】

由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.6、A【解析】

由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.【点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.7、B【解析】

解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误.故选:B.【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.8、C【解析】

先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.9、C【解析】

模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.10、B【解析】

根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.11、D【解析】

根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.12、A【解析】

在中,设,,,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,,,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,,,,即,即,,,,,,,,即,又,,,则,所以,,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、、,为线段上的一点,则存在实数使得,,设,,则,,,,,消去得,,所以,,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、7或【解析】

依据方差公式列出方程,解出即可.【详解】,1,0,,的平均数为,所以解得或.【点睛】本题主要考查方差公式的应用.14、2【解析】

直接利用柯西不等式得到答案.【详解】根据柯西不等式:2x-y2+4y当2x-y=2y,即x=328故答案为:2.【点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.15、【解析】

由复数对应的点,在第二象限,得,且,从而求出实数的范围.【详解】解:∵复数对应的点位于第二象限,∴,且,∴,故答案为:.【点睛】本题主要考查复数与复平面内对应点之间的关系,解不等式,且是解题的关键,属于基础题.16、【解析】

首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案.【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,,解得.故答案为.【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令.根据,确定,将转化为.令,用导数法研究其单调性求最值.【详解】(1)的定义域为,.因为单调,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,,不妨设,则.因为,所以t为关于a的减函数,所以..令,则.因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.18、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)根据茎叶图求出满足条件的概率即可;(Ⅱ)结合图表得到6人中有2个人考核为优,从而求出满足条件的概率即可;(Ⅲ)求出满足的成绩有16个,求出满足条件的概率即可.【详解】解:(Ⅰ)设这名学生考核优秀为事件,由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀,所以所求概率约为(Ⅱ)设从图中考核成绩满足的学生中任取2人,至少有一人考核成绩优秀为事件,因为表中成绩在的6人中有2个人考核为优,所以基本事件空间包含15个基本事件,事件包含9个基本事件,所以(Ⅲ)根据表格中的数据,满足的成绩有16个,所以所以可以认为此次冰雪培训活动有效.【点睛】本题考查了茎叶图问题,考查概率求值以及转化思想,是一道常规题.19、(1)乙的技术更好,见解析(2)①,;②【解析】

(1)列出分布列,求出期望,比较大小即可;(2)①直接根据概率的意义可得P0,P8;②设每轮比赛甲得分为,求出每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差数列,根据可得答案.【详解】(1)记甲乙各生产一件零件给工厂带来的效益分别为元、元,随机变量,的分布列分别为10521052所以,,所以,即乙的技术更好(2)①表示的是甲得分时,甲最终获胜的概率,所以,表示的是甲得4分时,甲最终获胜的概率,所以;②设每轮比赛甲得分为,则每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得时,最终获胜有以下三种情况:(1)下一轮得1分并最终获胜,概率为;(2)下一轮得0分并最终获胜,概率为;(3)下一轮得分并最终获胜,概率为;所以,所以是等差数列,则,即决赛甲获胜的概率是.【点睛】本题考查离散型随机变量的分布列和期望,考查数列递推关系的应用,是一道难度较大的题目.20、(1)详见解析;(2).【解析】

(1)由直径所对的圆周角为,可知,通过计算,利用勾股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中,,所以为直角三角形,且.因为,,所以.因为,,,所以平面.又平面,所以平面平面.(2)由已知,以为坐标原点,分别以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,,,,,,.设平面的一个法向量为,则即,取,得.设平面的法向量,则即,取,得.所以,又二面角为锐角,所以二面角的余弦值为.【点睛】本题考查了利用线面垂直判定面面垂直、利用空间向量数量积求二面角的余弦值问题.21、(1)(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论