浙江省金华市云富高级中学2025届高三数学第一学期期末学业质量监测试题含解析_第1页
浙江省金华市云富高级中学2025届高三数学第一学期期末学业质量监测试题含解析_第2页
浙江省金华市云富高级中学2025届高三数学第一学期期末学业质量监测试题含解析_第3页
浙江省金华市云富高级中学2025届高三数学第一学期期末学业质量监测试题含解析_第4页
浙江省金华市云富高级中学2025届高三数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华市云富高级中学2025届高三数学第一学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果实数满足条件,那么的最大值为()A. B. C. D.2.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为A.1 B. C. D.3.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象5.若复数满足,则()A. B. C.2 D.6.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.7.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件8.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.9.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.9610.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.11.如图,设为内一点,且,则与的面积之比为A. B.C. D.12.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,、的坐标分别为,,且满足,为坐标原点,若点的坐标为,则的取值范围为__________.14.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.15.在中,内角的对边分别是,若,,则____.16.已知函数为偶函数,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.18.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.19.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.20.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.21.(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.22.(10分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

解:当直线过点时,最大,故选B2、C【解析】

根据抛物线定义,可得,,又,所以,所以,设,则,则,所以,所以直线的斜率.故选C.3、B【解析】

试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题4、D【解析】

利用辅助角公式化简函数得到,再逐项判断正误得到答案.【详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.5、D【解析】

把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.6、D【解析】

根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.7、D【解析】

由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.8、B【解析】

根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.9、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.10、B【解析】

根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题11、A【解析】

作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【详解】如图,作交于点,则,由题意,,,且,所以又,所以,,即,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.12、A【解析】

过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【详解】解:由正弦定理得,则点在曲线上,设,则,,又,,因为,则,即的取值范围为.故答案为:.【点睛】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.14、-1【解析】

讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0时,[x﹣(a)](x﹣4)<0,其中a0,故解集为(a,4),由于a(﹣a)≤﹣14,当且仅当﹣a,即a=﹣1时取等号,∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣1;②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;③a>0时,[x﹣(a)](x﹣4)>0,其中a4,∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;综上所述,a=﹣1.故答案为:﹣1.【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.15、【解析】

由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.16、【解析】

根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线恒过定点,详见解析【解析】

(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)设直线的方程为:,则∴或,∴,同理,当时,由有.∴,同理,又∴,当时,∴直线的方程为∴直线恒过定点,当时,此时也过定点..综上:直线恒过定点.【点睛】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问题的求法等,意在考查学生的逻辑推理能力和数学运算能力,属于难题.18、(1)60%;(2)(i)0.12(ii)【解析】

(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得,.,利用期望公式列不等式求解【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则.(ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,依题意,可得,.因为2020届高考本科上线人数乙市的均值不低于甲市,所以,即,解得,又,故p的取值范围为.【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.19、(1);(2)存在,.【解析】

(1)设以为直径的圆心为,切点为,取关于轴的对称点,连接,计算得到,故轨迹为椭圆,计算得到答案.(2)设直线的方程为,设,联立方程得到,,计算,得到答案.【详解】(1)设以为直径的圆心为,切点为,则,取关于轴的对称点,连接,故,所以点的轨迹是以为焦点,长轴为4的椭圆,其中,曲线方程为.(2)设直线的方程为,设,直线的方程为,同理,所以,即,联立,所以,代入得,所以点都在定直线上.【点睛】本题考查了轨迹方程,定直线问题,意在考查学生的计算能力和综合应用能力.20、,;.【解析】

由,公差,有,,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,,可得,进而求出前项和.【详解】解:由题意知,,公差,有1,,成等比数列,所以,解得.所以数列的通项公式.数列的公比,其通项公式.当时,由,所以.当时,由,,两式相减得,所以.故所以的前项和,.又时,,也符合上式,故.【点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题.21、(1);(2)证明见解析.【解析】

(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论