版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省重点名校高一上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于x的不等式解集为,则下列说法错误的是()A.B.不等式的解集为C.D.不等式的解集为2.下列说法不正确的是()A.奇函数的图象关于原点对称,但不一定过原点 B.偶函数的图象关于y轴对称,但不一定和y轴相交C.若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,则 D.若奇函数的图象与y轴相交,交点不一定是原点3.已知,则直线ax+by+c=0与圆的位置关系是A.相交但不过圆心 B.相交且过圆心C.相切 D.相离4.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.5.函数(且)与函数在同一坐标系内的图象可能是()A. B.C. D.6.已知幂函数的图象过点,则的值为A. B.C. D.7.已知函数,若,则x的值是()A.3 B.9C.或1 D.或38.函数的零点所在区间为()A. B.C. D.9.已知集合,且,则的值可能为()A B.C.0 D.110.已知函数,若对任意,总存在,使得不等式都恒成立,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若方程恰有个不同的实数解、、、,且,则______12.已知集合,,则集合中子集个数是____13.设,则a,b,c的大小关系为_________.14.已知幂函数y=xα的图象过点(4,),则α=__________.15.若集合有且仅有两个不同的子集,则实数=_______;16.已知,且,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在一个周期内的图象如图所示(1)求的解析式;(2)直接写出在区间上的单调区间;(3)已知,都成立,直接写出一个满足题意的值18.(1)计算:.(2)若,求的值.19.某大学为了解学生对两家餐厅的满意度情况,从在两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行满意指数打分(满意指数是指学生对餐厅满意度情况的打分,分数设置为分.根据打分结果按,分组,得到如图所示的频率分布直方图,其中餐厅满意指数在中有30人.(1)求餐厅满意指数频率分布直方图中的值;(2)利用样本估计总体的思想,估计餐厅满意指数和餐厅满意指数的平均数及方差(同一组中的数据用该组区间中点值作代表);参考公式:,其中为的平均数,分别为对应的频率.(3)如果一名新来同学打算从两家餐厅中选择一个用餐,你建议选择哪个餐厅?说明理由.20.已知函数是定义在上的奇函数,且.(1)确定函数的解析式,判断并证明函数在上的单调性;(2)若存在实数,使得不等式成立,求正实数的取值范围.21.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点.(1)求的值;(2)求旳值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据已知条件得和是方程的两个实根,且,根据韦达定理可得,根据且,对四个选项逐个求解或判断可得解.【详解】由已知可得-2,3是方程的两根,则由根与系数的关系可得且,解得,所以A正确;对于B,化简为,解得,B正确;对于C,,C正确;对于D,化简为:,解得,D错误故选:D.2、D【解析】对于AB,举例判断,对于CD根据函数奇偶性和对称性的关系分析判断即可【详解】对于A,是奇函数,其图象关于原点对称,但不过原点,所以A正确,对于B,是偶函数,其图象关于轴对称,但与轴不相交,所以B正确,对于C,若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,则两个交点关于轴对称,所以,所以C正确,对于D,若奇函数与y轴有交点,则,故,所以函数必过原点,所以D错误,故选:D3、A【解析】∵2a2+2b2=c2,∴a2+b2=.∴圆心(0,0)到直线ax+by+c=0的距离d=<2,∴直线ax+by+c=0与圆x2+y2=4相交,又∵点(0,0)不在直线ax+by+c=0上,故选A点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系(2)代数法:联立方程之后利用Δ判断(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题4、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B5、C【解析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案.【详解】解:当时,增函数,开口向上,对称轴,排除B,D;当时,为减函数,开口向下,对称轴,排除A,故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6、B【解析】利用幂函数图象过点可以求出函数解析式,然后求出即可【详解】设幂函数的表达式为,则,解得,所以,则.故答案为B.【点睛】本题考查了幂函数,以及对数的运算,属于基础题7、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A8、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B9、C【解析】化简集合得范围,结合判断四个选项即可.【详解】集合,四个选项中,只有,故选:C【点睛】本题考查元素与集合的关系,属于基础题10、D【解析】探讨函数性质,求出最大值,再借助关于a函数单调性列式计算作答.【详解】依题意,,则是上的奇函数,当时,,在上单调递增,在上单调递减,则,由奇函数性质知,函数在上的最大值是,依题意,存在,,令,显然是一次型函数,因此,或,解得或,所以实数的取值范围为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的图象以及直线的图象,利用对数的运算可求得的值,利用正弦型函数的对称性可求得的值,即可得解.【详解】作出函数的图象以及直线的图象如下图所示:由图可知,由可得,即,所以,,可得,当时,,由,可得,由图可知,点、关于直线对称,则,因此,.故答案为:.12、4【解析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【点睛】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.13、【解析】根据指数函数和对数函数的单调性可得到,,,从而可比较a,b,c的大小关系.【详解】因为,,,所以.故答案为:.14、【解析】把点的坐标代入幂函数解析式中即可求出.【详解】解:由幂函数的图象过点,所以,解得.故答案为:.15、或.【解析】根据集合的子集个数确定出方程解的情况,由此求解出参数值.【详解】因为集合仅有两个不同子集,所以集合中仅有个元素,当时,,所以,满足要求;当时,,所以,此时方程解为,即,满足要求,所以或,故答案:或.16、##【解析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解.【详解】由题设,,又,即,且,所以,故.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)增区间为,减区间为(3)【解析】(1)根据图象确定周期可得出,再由图象过点求出即可得出解析式;(2)根据图象观察直接写出即可;(3)由知函数图象关于对称,由图象直接写即可.【小问1详解】由图可知,所以因,且,所以因为图象过点,所以所以所以所以因为,所以所以【小问2详解】在区间上,函数的增区间为,减区间为,【小问3详解】因为恒成立,所以函数图象关于对称,由图可知适合题意,(答案不唯一)18、(1);(2)【解析】(1)根据指数幂运算、对数加法运算以及三角函数的诱导公式一,化简即可求出结果;(2)利用诱导公式和同角的基本关系,对原式化简,可得,再将代入,即可求出结果.【详解】解:(1)原式.(2)因为,所以.19、(1),(2)餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别为,(3)答案见解析【解析】(1)根据频率的含义和性质列方程,即可解得:,;(2)根据平均数和方差的定义,然后运算即可;(3)平均数和方差在实际生活中的应用,平均满意度越高,就越会受到欢迎.【小问1详解】因为餐厅满意指数在中有30人,则有:解得:根据总的频率和为1,则有:解得:综上可得:,【小问2详解】设餐厅满意指数的平均数和方差分别为餐厅满意指数的平均数和方差分别为,则有:,,,,综上可得:餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别,【小问3详解】答案一:餐厅满意指数的平均数为,方差为,餐厅满意指数的平均数为,方差为,因为,所以推荐餐厅;答案二:餐厅满意指数在的频率为,在的频率为,餐厅满意指数在和的频率都为,所以推荐餐厅;(答案不唯一,符合实际情况即可)20、(1),函数在上单调递减,证明见解析.(2)【解析】(1)根据,得到函数解析式,设,计算,证明函数的单调性.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代科技在提升小学生科学素质中的角色与策略研究
- 科技行业如何将安全文化落到实处
- 高强度体育项目后的能量补充与身体修复法
- 教学反思模板万能简短10篇
- 工业互联网平台在农业智能化中的潜力挖掘
- 如何通过德育工作促进学生全面发展的实践研究
- 小学科学与日常生活实践的紧密联系研究
- 语文课堂中的文化传承教学设计案例分享
- 校园文化特色与校园景观融合
- 2025年网络性能分析仪项目可行性研究报告
- 2025年中国南方航空股份有限公司招聘笔试参考题库含答案解析
- 商务部发布《中国再生资源回收行业发展报告(2024)》
- 2025年福建新华发行(集团)限责任公司校园招聘高频重点提升(共500题)附带答案详解
- 江苏省驾校考试科目一考试题库
- 四川省成都市青羊区成都市石室联合中学2023-2024学年七上期末数学试题(解析版)
- 咨询公司绩效工资分配实施方案
- 2025新人教版英语七年级下单词表
- 中华护理学会团体标准-气管切开非机械通气患者气道护理
- 未成年入职免责协议书
- 光伏电站巡检专项方案
- 2024年山东省东营市中考数学试题 (原卷版)
评论
0/150
提交评论