江苏省盐城市盐城中学2025届数学高二上期末达标检测模拟试题含解析_第1页
江苏省盐城市盐城中学2025届数学高二上期末达标检测模拟试题含解析_第2页
江苏省盐城市盐城中学2025届数学高二上期末达标检测模拟试题含解析_第3页
江苏省盐城市盐城中学2025届数学高二上期末达标检测模拟试题含解析_第4页
江苏省盐城市盐城中学2025届数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市盐城中学2025届数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点到直线的距离为A.1 B.2C.3 D.42.某救援队有5名队员,其中有1名队长,1名副队长,在一次救援中需随机分成两个行动小组,其中一组2名队员,另一组3名队员,则正、副队长不在同一组的概率为()A. B.C. D.3.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.4.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球5.设函数,则()A.4 B.5C.6 D.76.若数列的通项公式为,则该数列的第5项为()A. B.C. D.7.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.8.的展开式中的系数是()A. B.C. D.9.意大利数学家斐波那契的《算经》中记载了一个有趣的数列:1,1,2,3,5,8,13,21,34,55,89,144,……,这就是著名的斐波那契数列,该数列的前2022项中有()个奇数A.1012 B.1346C.1348 D.135010.抛物线的焦点到准线的距离是A. B.1C. D.11.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.12.关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列二、填空题:本题共4小题,每小题5分,共20分。13.设是数列的前项和,且,,则__________14.已知数列前项和为,且,则_______.15.若恒成立,则______.16.等比数列的前项和为,则的值为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆.(1)若直线与圆相交于两点,弦的中点为,求直线的方程;(2)若斜率为1的直线被圆截得的弦为,以为直径的圆经过圆的圆心,求直线的方程.18.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)19.(12分)篮天技校为了了解车床班学生的操作能力,设计了一个考查方案;每个考生从道备选题中一次性随机抽取道题,按照题目要求独立完成零件加工,规定:至少正确加工完成其中个零件方可通过.道备选题中,考生甲有个零件能正确加工完成,个零件不能完成;考生乙每个零件正确完成的概率都是,且每个零件正确加工完成与否互不影响(1)分别求甲、乙两位考生正确加工完成零件数的概率分布列(列出分布列表);(2)试从甲、乙两位考生正确加工完成零件数的数学期望及两人通过考查的概率分析比较两位考生的操作能力20.(12分)已知圆,直线过定点.(1)若与圆相切,求的方程;(2)若与圆相交于两点,且,求此时直线的方程.21.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆的位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分22.(10分)如图,三棱柱的所有棱长都是,平面,为的中点,为的中点(1)证明:直线平面;(2)求平面与平面夹角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用点到直线的距离公式得到答案.【详解】,答案为B【点睛】本题考查了点到直线的距离公式,属于简单题.2、C【解析】求出基本事件总数与正、副队长不在同一组的基本事件个数,即可求出答案.【详解】基本事件总数为正、副队长不在同一组的基本事件个数为故正、副队长不在同一组的概率为.故选:C.3、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.4、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C5、D【解析】求出函数的导数,将x=1代入即可求得答案.【详解】,故,故选:D.6、C【解析】直接根据通项公式,求;【详解】,故选:C7、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B8、B【解析】根据二项式定理求出答案即可.【详解】的展开式中的系数是故选:B9、C【解析】由斐波那契数列的前几项分析该数列的项的奇偶规律,由此确定该数列的前2022项中的奇数的个数.【详解】由已知可得为奇数,为奇数,为偶数,因为,所以为奇数,为奇数,为偶数,…………所以为奇数,为奇数,为偶数,又故该数列的前2022项中共有1348个奇数,故选:C.10、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.11、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B12、B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.14、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.15、1【解析】利用导数研究的最小值为,再构造研究其最值,即可确定参数a的值.【详解】令,则且,当时,递减;当时,递增;所以,即在上恒成立,令,则,当时,递增;当时,递减;所以,综上,.故答案为:116、【解析】根据等比数列前项和公式的特点列方程,解方程求得的值.【详解】由于等比数列前项和,本题中,故.故填:.【点睛】本小题主要考查等比数列前项和公式的特点,考查观察与思考的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(或(2)或【解析】(1)由条件可得,由此可求直线的斜率,由点斜式求直线的方程;(2)由条件可求到直线的距离,利用待定系数法求直线的方程.【小问1详解】圆,得圆心,半径,直线的斜率:,设直线的斜率为,有,解得.所求直线的方程为:.(或【小问2详解】直线m被圆C截得的弦EF为直径的圆经过圆心C,∴圆心C到直线的距离为.设直线方䄇为,则解得或直线的方程为:或18、(1)(2)【解析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;19、(1)分布列见解析(2)甲的试验操作能力较强,理由见解析【解析】(1)设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,计算出两个随机变量在不同取值下的概率,可得出这两个随机变量的概率分布列;(2)计算出、、、的值,比较、的大小,以及、的大小,由此可得出结论.【小问1详解】解:设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正确加工完成零件数的概率分布列如下表所示:,,,,所以,考生乙正确加工完成零件数的概率分布列如下表所示:【小问2详解】解:,,,,所以,,从做对题的数学期望分析,两人水平相当;从通过考查的概率分析,甲通过的可能性大,因此可以判断甲的试验操作能力较强.20、(1)或;(2)或.【解析】(1)由圆的方程可得圆心和半径,当直线斜率不存在时,知与圆相切,满足题意;当直线斜率存在时,利用圆心到直线距离等于半径可构造方程求得,由此可得方程;(2)当直线斜率不存在时,知与圆相切,不合题意;当直线斜率存在时,利用垂径定理可构造方程求得,由此可得方程.【小问1详解】由圆的方程知:圆心,半径;当直线斜率不存在,即时,与圆相切,满足题意;当直线斜率存在时,设,即,圆心到直线距离,解得:,,即;综上所述:直线方程为或;【小问2详解】当直线斜率不存在,即时,与圆相切,不合题意;当直线斜率存在时,设,即,圆心到直线距离,,解得:或,直线的方程为或.21、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C的圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论