版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省葫芦岛市锦化高中2025届数学高一上期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.2.在长方体中,,,则直线与平面所成角的正弦值为()A. B.C. D.3.设函数的部分图象如图,则A.B.C.D.4.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分且不必要条件 D.既不充分也不必要条件5.在下列区间中函数的零点所在的区间为()A. B.C. D.6.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.6617.已知函数,则方程的实数根的个数为()A. B.C. D.8.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,9.下列关系中,正确的是()A. B.C. D.10.命题“”的否定为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.空间两点与的距离是___________.12.若sinα<0且tanα>0,则α是第___________象限角13.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________14.若将函数的图象向左平移个单位长度,得到函数的图象,则的最小值为______15.已知,则_________.16.不等式的解为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点.求:(1)边上高所在的直线方程;(2)边中线所在的直线方程.18.已知二次函数的图象关于直线对称,且关于x的方程有两个相等的实数根(1)求函数的值域;(2)若函数(且)在上有最小值﹣2,最大值7,求a的值19.已知函数为奇函数.(1)求实数的值,并用定义证明是上的增函数;(2)若关于的不等式的解集非空,求实数的取值范围.20.已知.(1)在直角坐标系中用“五点画图法”画出一个周期内的图象.(要求列表、描点)(2)求函数的最小正周期、对称中心、对称轴方程.21.如图,在长方体中,,是与的交点.求证:(1)平面;(2)平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D2、D【解析】如图,连接交于点,连接,则结合已知条件可证得为直线与平面所成角,然后根据已知数据在求解即可【详解】解:如图,连接交于点,连接,因为长方体中,,所以四边形为正方形,所以,,所以,因为平面,所以,因为,所以平面,所以为直线与平面所成角,因为,,所以,在中,,所以直线与平面所成角的正弦值为,故选:D【点睛】此题考查线面角的求法,考查空间想象能力和计算能力,属于基础题3、A【解析】根据函数的图象,求出A,和的值,得到函数的解析式,即可得到结论【详解】由图象知,,则,所以,即,由五点对应法,得,即,即,故选A【点睛】本题主要考查了由三角函数的图象求解函数的解析式,其中解答中根据条件求出A,和的值是解决本题的关键,着重考查了运算与求解能力,属于基础题.4、A【解析】解指数不等式和对数不等式,求出两个命题的等价命题,进而根据充要条件的定义,可得答案【详解】“”“”,“”“”,“”是“”的充分而不必要条件,故“”是“”的的充分而不必要条件,故选:5、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.6、A【解析】由题意得出,再取对数得出k的值.【详解】由题意可知,所以,解得故选:A7、B【解析】由已知,可令,要求,即为,原题转化为直线与的图象的交点情况,通过画出函数的图象,讨论的取值,即可直线与的图象的交点情况.【详解】令,则,①当时,,,,即,②当时,,,画出函数的图象,如图所示,若,即,无解;若,直线与的图象有3个交点,即有3个不同实根;若,直线与的图象有2个交点,即有2个不同实根;综上所述,方程的实数根的个数为5个,故选:8、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.9、C【解析】根据自然数集、正整数集、整数集以及有理数集的含义判断数与集合的关系.【详解】对于A,,所以A错误;对于B,不是整数,所以,所以B错误;对于C,,所以C正确;对于D,因为不含任何元素,则,所以D错误.故选:C.10、D【解析】根据命题的否定的定义写出结论,注意存在量词与全称量词的互换【详解】命题“”的否定为“”故选D【点睛】本题考查命题的否定,解题时一定注意存在量词与全称量词的互换二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据两点间的距离求得正确答案.【详解】.故答案为:12、第三象限角【解析】当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0且tanα>0,则α是第三象限角考点:三角函数值的象限符号.13、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.14、;【解析】因为函数的图象向左平移个单位长度,得到,所以的最小值为15、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在16、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用相互垂直的直线斜率之间的关系可得高所在的直线的斜率,进而得出点斜式(2)利用中点坐标公式可得边的中点,利用两点式即可得出【详解】解:(1)又因为垂直,直线的方程为,即;(2)边中点E,中线的方程为,即.【点睛】本题考查了相互垂直的直线斜率之间的关系、中点坐标公式、两点式、一般式,考查了推理能力与计算能力,属于基础题18、(1)(2)或【解析】(1)根据对称轴以及判别式等于得出,再由基本不等式得出函数的值域;(2)利用换元法结合对数函数以及二次函数的单调性得出a的值【小问1详解】依题意得,因为,所以,解得,,故,,当时,,当且仅当,即时,等号成立当时,,当且仅当,即时,等号成立故的值域为【小问2详解】,令,则①当时,,因,所以,解得因为,所以,解得或(舍去)②当时,,因为,所以,解得,解得或(舍去)综上,a的值为或19、(1),证明见解析;(2).【解析】(1)由函数奇偶性的性质,求得,再利用函数的单调性的定义与判定方法,即可是上的增函数;(2)由函数为奇函数,且在上单调递增,把不等式转化为在上有解,结合二次函数的性质,即可求解.【详解】(1)因为定义在上的奇函数,可得,都有,令,可得,解得,所以,此时满足,所以函数是奇函数,所以.任取,且,则,因为,即,所以是上的增函数.(2)因为为奇函数,且的解集非空,可得的解集非空,又因为在上单调递增,所以的解集非空,即在上有解,则满足,解得,所以实数的取值范围..20、(1)见解析;(2)见解析【解析】(1)列表、描点即可用五点画图法作出函数图像;(2)结合函数的图像,可直接写出其最小正周期,结合正弦函数的性质可得出其对称中心以及对称轴.【详解】(1)列表:0131-11(2)最小正周期为,由得,所以对称中心为;由得,所以对称轴方程为.【点睛】本题主要考查五点作图法,以及三角函数的性质,熟记函数性质即可求解,属于基础题型.21、(1)见解析;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版投资协议补充协议:产业链整合投资合作补充协议3篇
- 2025年度个性化定制汽车租赁合同书4篇
- 二零二五版漫画连载网络平台版权合作协议4篇
- 2025年汕尾货车从业资格证考什么
- 2025年食堂承包经营食品安全风险评估与防控合同3篇
- 二零二五年度城市公交车辆挂靠经营许可合同4篇
- 二零二五年度厂房污水处理及排放合同汇编3篇
- 二零二五年度土地储备项目规划设计合同
- 2025版住宅小区物业维修基金管理合同法律指引3篇
- 二零二五年度外聘演员数字人形象授权合同样本
- 2025年温州市城发集团招聘笔试参考题库含答案解析
- 2025年中小学春节安全教育主题班会课件
- 2025版高考物理复习知识清单
- 除数是两位数的除法练习题(84道)
- 2025年度安全检查计划
- 2024年度工作总结与计划标准版本(2篇)
- 全球半导体测试探针行业市场研究报告2024
- 反走私课件完整版本
- 2024年注册计量师-一级注册计量师考试近5年真题附答案
- 2023年四川省乐山市中考数学试卷
- 【可行性报告】2023年电动自行车行业项目可行性分析报告
评论
0/150
提交评论