2025届平顶山市重点中学数学高二上期末综合测试模拟试题含解析_第1页
2025届平顶山市重点中学数学高二上期末综合测试模拟试题含解析_第2页
2025届平顶山市重点中学数学高二上期末综合测试模拟试题含解析_第3页
2025届平顶山市重点中学数学高二上期末综合测试模拟试题含解析_第4页
2025届平顶山市重点中学数学高二上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届平顶山市重点中学数学高二上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,、分别是椭圆的左顶点和上顶点,从椭圆上一点向轴作垂线,垂足为右焦点,且,点到右准线的距离为,则椭圆方程为()A. B.C. D.2.设集合,集合,当有且仅有一个元素时,则r的取值范围为()A.或 B.或C.或 D.或3.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.54.已知函数(是的导函数),则()A.21 B.20C.16 D.115.已知各项均为正数的等比数列满足,若存在两项,使得,则的最小值为()A.4 B.C. D.96.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定7.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.8.已知等比数列满足,则q=()A.1 B.-1C.3 D.-39.若椭圆的短轴为,一个焦点为,且为等边三角形的椭圆的离心率是A. B.C. D.10.在正三棱锥中,,且,M,N分别为BC,AD的中点,则直线AM和CN夹角的余弦值为()A. B.C. D.11.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.12.椭圆的焦点坐标为()A.和 B.和C.和 D.和二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______14.过抛物线的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则_________.15.已知直线和直线垂直,则实数___________.16.抛物线的准线方程为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积18.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.19.(12分)计算:(1)求函数(a,b为正常数)的导数(2)已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围20.(12分)【2018年新课标I卷文】已知函数(1)设是的极值点.求,并求的单调区间;(2)证明:当时,21.(12分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积22.(10分)已知圆,直线(1)当直线与圆相交,求的取值范围;(2)当直线与圆相交于、两点,且时,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设椭圆方程为,设该椭圆的焦距为,则,求出点的坐标,根据可得出,可得出,,结合已知条件求得的值,可得出、的值,即可得出椭圆的方程.【详解】设椭圆方程为,设该椭圆的焦距为,则,由图可知,点第一象限,将代入椭圆方程得,得,所以,点,易知点、,,,因为,则,得,可得,则,点到右准线的距离为为,则,,因此,椭圆的方程为.故选:A.2、B【解析】由已知得集合M表示以点圆心,以2半径左半圆,与y轴的交点为,集合N表示以点为圆心,以r为半径的圆,当圆C与圆O相外切于点P,有且仅有一个元素时,圆C过点M时,有且有两个元素,当圆C过点N,有且仅有一个元素,由此可求得r的取值范围.【详解】解:由得,所以集合M表示以点圆心,以2半径的左半圆,与y轴的交点为,集合表示以点为圆心,以r为半径的圆,如下图所示,当圆C与圆O相外切于点P时,有且仅有一个元素时,此时,当圆C过点M时,有两个元素,此时,所以,当圆C过点N时,有且仅有一个元素,此时,所以,所以当有且仅有一个元素时,则r的取值范围为或,故选:B.3、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C4、B【解析】根据已知求出,即得解.【详解】解:由题得,所以.故选:B5、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【详解】因为各项均为正数的等比数列满足,可得,即解得或(舍去)∵,,∴=当且仅当,即m=2,n=4时,等号成立故的最小值等于.故选:C【点睛】方法点睛:本题主要考查等比数列的通项公式和基本不等式的应用,解题的关键是常量代换的技巧,所谓常量代换,就是把一个常数用代数式来代替,如,再把常数6代换成已知中的m+n,即.常量代换是基本不等式里常用的一个技巧,可以优化解题,提高解题效率.6、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A7、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.8、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.9、B【解析】因为为等边三角形,所以.考点:椭圆的几何性质.点评:椭圆图形当中有一个特征三角形,它的三边分别为a,b,c.因而可据此求出离心率.10、B【解析】由题意可得两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,利用空间向量求解【详解】因为,所以两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,如图所示,因为,所以,因为M,N分别为BC,AD的中点,所以,所以,设直线AM和CN所成的角为,则,所以直线AM和CN夹角的余弦值为,故选:B11、D【解析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D12、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先根据双曲线的渐近线方程和焦点坐标,求出双曲线的标准方程;设,根据双曲线的定义可知,从而利用基本不等式即可求出的最小值.【详解】因为双曲线的渐近线方程为,焦点坐标为,,所以,即,所以双曲线方程为.设,则,且,,当且仅当,即时等号成立,所以的最小值是.故答案为:.14、2【解析】分别过A,B作准线的垂线,垂足分别为,,由可求.【详解】分别过A,B作准线的垂线,垂足分别为,,设,,则,∴,∴.故答案为:2.15、【解析】根据两条直线相互垂直的条件列方程,解方程求得m的值.【详解】由于两条直线垂直,故,解得.故答案为:.16、【解析】本题利用抛物线的标准方程得出抛物线的准线方程【详解】由抛物线方程可知,抛物线的准线方程为:故答案为【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由椭圆的性质求出,进而得出方程;(2)由,结合余弦定理求出,再由面积公式得出三角形的面积.【详解】解:(1),与轴垂直,,∴∴椭圆的方程为(2)由(1)知,∵,∴∴,∴的面积为【点睛】关键点睛:解决问题二的关键在于利用余弦定理结合完全平方和公式求出,进而得出面积.18、(1);(2).【解析】(1)先设等差数列的公差为,由题中条件,列出方程求出首项和公差,即可得出通项公式;(2)根据(1)的结果,得到,再由等比数列的求和公式,即可得出结果.【详解】(1)设等差数列的公差为,因为,,所以,解得,所以;(2)由(1)可得,,即数列为等比数列,所以数列的前n项和.19、(1)(2)【解析】(1)根据导数的运算法则,结合复合函数的求导法则,可得答案;(2)求出函数的导数,结合基本不等式求得导数的取值范围,根据导数的几何意义结合正切函数的单调性,求得答案.【小问1详解】由题意得:;【小问2详解】,由于,故,当且仅当时取等号,故,则P处的切线的斜率,由为曲线在点P处的切线的倾斜角可得,由于,故的取值范围为:.20、(1)a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.【解析】分析:(1)先确定函数的定义域,对函数求导,利用f′(2)=0,求得a=,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a≥时,f(x)≥,之后构造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)≥g(1)=0,利用不等式的传递性,证得结果.详解:(1)f(x)的定义域为,f′(x)=aex–由题设知,f′(2)=0,所以a=从而f(x)=,f′(x)=当0<x<2时,f′(x)<0;当x>2时,f′(x)>0所以f(x)在(0,2)单调递减,在(2,+∞)单调递增(2)当a≥时,f(x)≥设g(x)=,则当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点故当x>0时,g(x)≥g(1)=0因此,当时,点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要保证函数的生存权,先确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.21、(1)(2)2【解析】(1)首先求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程;(2)首先求出两函数的交点坐标,再利用定积分及微积分基本定理计算可得;【小问1详解】解:因为,所以,所以切线的斜率,切线过点,切线的方程为,即【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论