




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省聊城市文苑中学数学高一上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.22.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.3.已知集合,则()A.0或1 B.C. D.或4.函数y=1g(1-x)+的定义域是()A. B.C. D.5.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.6.下面四种说法:①若直线异面,异面,则异面;②若直线相交,相交,则相交;③若,则与所成的角相等;④若,,则.其中正确的个数是()A.4 B.3C.2 D.17.以下给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.8.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.249.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=1110.将函数图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位,得到函数的图象,则函数的图象的一条对称轴为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若函数恰有4个不同的零点,则实数的取值范围是________.12.已知函数是定义在上的奇函数,且当时,,则的值为__________13.已知集合,,则集合中元素的个数为__________14.函数的最大值为___________.15.已知函数是奇函数,当时,,若,则m的值为______.16.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值18.已知,且的最小正周期为.(1)求关于x的不等式的解集;(2)求在上的单调区间.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.20.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.21.2022年新冠肺炎仍在世界好多国家肆虐,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨.我市某小区为了防止疫情在小区出现,严防外来人员进入小区,切实保障居民正常生活,设置“特殊值班岗”.现有包含甲、乙在内的4名志愿者参与该工作,每人安排一天,每4天一轮.在一轮的“特殊值班岗”安排中,求:(1)甲、乙两人相邻值班的概率;(2)甲或乙被安排在前2天值班的概率
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.2、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B3、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.4、B【解析】可看出,要使得原函数有意义,则需满足解出x的范围即可【详解】要使原函数有意义,则:解得-1≤x<1;∴原函数的定义域是[-1,1)故选B【点睛】本题主要考查函数定义域的概念及求法,考查对数函数的定义域和一元二次不等式的解法.意在考查学生对这些知识的理解掌握水平.5、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.6、D【解析】对于①,直线a,c的关系为平行、相交或异面.故①不正确对于②,直线a,c的关系为平行、相交或异面.故②不正确对于③,由异面直线所成角的定义知正确对于④,直线a,c关系为平行、相交或异面.故④不正确综上只有③正确.选D7、A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值【详解】程序运行过程中,各变量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此类推,第十圈:S=1+,k=11退出循环其中判断框内应填入的条件是:k≤10,故选A【点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误8、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.9、C【解析】因为,所以,则,故选C10、C【解析】,所以,所以,所以是一条对称轴故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】本题首先可根据函数解析式得出函数在区间和上均有两个零点,然后根据在区间上有两个零点得出,最后根据函数在区间上有两个零点解得,即可得出结果.【详解】当时,令,得,即,该方程至多两个根;当时,令,得,该方程至多两个根,因为函数恰有4个不同的零点,所以函数在区间和上均有两个零点,函数在区间上有两个零点,即直线与函数在区间上有两个交点,当时,;当时,,此时函数的值域为,则,解得,若函数在区间上也有两个零点,令,解得,,则,解得,综上所述,实数的取值范围是,故答案为:.【点睛】本题考查根据函数零点数目求参数的取值范围,可将其转化为两个函数的交点数目进行求解,考查函数最值的应用,考查推理能力与计算能力,考查分类讨论思想,是难题.12、-1【解析】因为为奇函数,故,故填.13、2【解析】依题意,故,即元素个数为个.14、【解析】根据二次函数的性质,结合给定的区间求最大值即可.【详解】由,则开口向上且对称轴为,又,∴,,故函数最大值为.故答案为:.15、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数16、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴18、(1)(2)单调递增区间为和,单调递减区间为【解析】(1)首先利用两角差的正弦公式及二倍角公式将函数化简,再根据函数的最小正周期求出,即可得到函数解析式,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的范围,再跟正弦函数的性质计算可得.【小问1详解】解:因为所以即,由及的最小正周期为,所以,解得;由得,,解得,所求不等式的解集为小问2详解】解:,,在和上递增,在上递减,令,解得;令,解得;令,解得;所以在上的单调递增区间为和,单调递减区间为;19、(1)证明见解析;(2)证明见解析.【解析】(1)由棱柱的性质及中点得B1F1∥BF,AF1∥C1F.,从而有线面平行,再有面面平行;(2)先证明B1F1⊥平面ACC1A1,然后可得面面垂直【详解】证明:(1)在正三棱柱ABC-A1B1C1中,连接,∵F、F1分别是AC、A1C1的中点,,,,∴是平行四边形,是平行四边形,∴B1F1∥BF,AF1∥C1F.平面,平面,∴平面,同理平面,又∵B1F1∩AF1=F1,平面,平面,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,平面,∴B1F1⊥AA1.又是等边三角形,是中点,∴B1F1⊥A1C1,而A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.【点睛】本题考查证明面面平行和面面垂直,掌握面面平行和面面垂直的判定定理是解题关键20、(1)(2)【解析】(1)求得集合,根据集合的交集、并集和补集的运算,即可求解;(2)由,所以,结合集合的包含关系,即可求解.【详解】(1)由题意,集合,因为集合,则,所以,.(2)由题意,因为,所以,又因为,,所以,即实数的取值范围为.【点睛】本题主要考查了集合的交集、并集和补集的运算,以及利用集合的包含关系求解参数问题,其中解答中熟记集合的基本运算,以及合理利用集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)(2)【解析】(1)利用列举法求解即可;(2)利用列举法求解即可.【小问1详解】由题意,设4名志愿者为甲,乙,丙,丁,4天一轮的值班安排所有可能的结果是:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24个样本点设甲乙相邻为事件A,则事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,丁),(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,丁),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年版个人借款合同模板大全
- 金属成形机床行业先进复合材料应用考核试卷
- 肇庆市封开县2025年八年级《语文》上学期期末试题与参考答案
- 航空航天股权收益互换与技术研发合作协议
- 跨省家庭探视权协议
- 2025年中国薄膜涂层行业市场前景预测及投资价值评估分析报告
- 2025年中国薄壁注塑ABS行业市场前景预测及投资价值评估分析报告
- 抖音短视频合作终止与内容更新协议
- 游艇俱乐部会员专属保险经纪合同
- 2025年中国钯金行业市场前景预测及投资价值评估分析报告
- 23CG60 预制桩桩顶机械连接(螺丝紧固式)
- 自杀风险的评估与记录-生
- 廉洁心得体会500字(5篇)
- 30th燃煤蒸汽锅炉烟气除尘脱硫系统设计毕业设计
- 概率论与数理统计课后答案及概率论与数理统计(第五版)习题答案
- 初中音乐-歌曲《天之大》教学课件设计
- 新融合大学英语(III)智慧树知到答案章节测试2023年江西理工大学
- 11ZJ401楼梯栏杆安装图集
- 五种常见挡土墙的设计计算实例
- 公路路面基层施工技术规范
- 2023-2024学年江苏省靖江市小学数学五年级下册期末模考试卷
评论
0/150
提交评论