2025届河北省承德市鹰城一中高三数学第一学期期末达标检测试题含解析_第1页
2025届河北省承德市鹰城一中高三数学第一学期期末达标检测试题含解析_第2页
2025届河北省承德市鹰城一中高三数学第一学期期末达标检测试题含解析_第3页
2025届河北省承德市鹰城一中高三数学第一学期期末达标检测试题含解析_第4页
2025届河北省承德市鹰城一中高三数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省承德市鹰城一中高三数学第一学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5 B. C.4 D.162.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.3.设是等差数列的前n项和,且,则()A. B. C.1 D.24.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为()A. B. C. D.5.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.6.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.7.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.8.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.89.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.10.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为()A. B. C. D.11.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.12.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知为实数,向量,,且,则____________.14.已知数列的首项,函数在上有唯一零点,则数列|的前项和__________.15.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________.16.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且满足.(Ⅰ)求角的大小;(Ⅱ)若的面积为,,求和的值.18.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).19.(12分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.20.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.21.(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.22.(10分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.2、B【解析】

求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.3、C【解析】

利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.4、B【解析】

延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.5、D【解析】

通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.6、B【解析】

双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.7、D【解析】

设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.8、C【解析】

根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.9、D【解析】

由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.10、A【解析】

设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,,,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.11、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.12、B【解析】

根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,∴此三棱锥的外接球即为长方体的外接球,且球半径为,∴三棱锥外接球表面积为,∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】

由,,且,得,解得,则,则.14、【解析】

由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【详解】因为为偶函数,在上有唯一零点,所以,∴,∴,∴为首项为2,公比为2的等比数列.所以,.故答案为:【点睛】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.15、【解析】

根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,,可得,则,令,,可得.①又令数列中的,,,根据等差数列的性质,可得,所以.②根据①②得出,.所以.故答案为.【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.16、【解析】

根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时,取得最小值因而故答案为:【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)运用正弦定理和二角和的正弦公式,化简,即可求出角的大小;(Ⅱ)通过面积公式和,可以求出,这样用余弦定理可以求出,用余弦定理求出,根据同角的三角函数关系,可以求出,这样可以求出,最后利用二角差的余弦公式求出的值.【详解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【点睛】本题考查了正弦定理、余弦定理、面积公式、二倍角公式、二角差的余弦公式以及同角的三角函数关系,考查了运算能力.18、(1)证明见解析(2)证明见解析【解析】

(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,,,(以上三式当且仅当时同时取“=”)由(1)知,,所以,将以上三式相加得即.【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.19、(1);(2)不存在.【解析】

(1)由已知,利用基本不等式的和积转化可求,利用基本不等式可将转化为,由不等式的传递性,可求的最小值;(2)由基本不等式可求的最小值为,而,故不存在.【详解】(1)由,得,且当时取等号.故,且当时取等号.所以的最小值为;(2)由(1)知,.由于,从而不存在,使得成立.【考点定位】基本不等式.20、(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】

(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:(Ⅰ)由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为:是否合格性别不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(Ⅱ)“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为,.的分布列为:20151050所以.(Ⅲ)由(Ⅱ)知:.故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.21、(1)或(2)【解析】

(1)分类讨论去绝对值即可;(2)根据条件分a<﹣3和a≥﹣3两种情况,由[﹣2,1]⊆A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a=﹣1时,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴当x≤﹣1时,原不等式可化为﹣x﹣1≤﹣2x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论