云南省通海三中2025届数学高二上期末检测模拟试题含解析_第1页
云南省通海三中2025届数学高二上期末检测模拟试题含解析_第2页
云南省通海三中2025届数学高二上期末检测模拟试题含解析_第3页
云南省通海三中2025届数学高二上期末检测模拟试题含解析_第4页
云南省通海三中2025届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省通海三中2025届数学高二上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列,,,则数列的前项和为()A. B.C. D.2.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.3.已知三角形三个顶点为、、,则边上的高所在直线的方程为()A. B.C. D.4.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.5.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.7.圆与的公共弦长为()A. B.C. D.8.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.下列说法错误的是()A.“若,则”的逆否命题是“若,则”B.“”的否定是”C.“是"”的必要不充分条件D.“或是"”的充要条件10.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.211.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.12.如图,在平行六面体中,()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数恰有两个极值点,则k的取值范围是______14.若过点和的直线与直线平行,则_______15.若点为圆的弦的中点,则弦所在直线方程为________.16.曲线在点处的切线方程为_____________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值18.(12分)某市共有居民60万人,为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照,,……分成9组,制成了如图所示的频率分布直方图(1)求直方图中的a值,并估计该市居民月均用水量不少于3吨的人数(单位:人);(2)估计该市居民月均用水量的众数和中位数19.(12分)已知直线和的交点为(1)若直线经过点且与直线平行,求直线的方程;(2)若直线经过点且与两坐标轴围成的三角形的面积为,求直线的方程20.(12分)如图,在三棱柱中,=2,且,⊥底面ABC.E为AB中点(1)求证:平面;(2)求平面与平面CEB夹角的余弦值21.(12分)已知椭圆的左、右焦点分别为,,点在椭圆C上,且满足(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同的两点M,N,且(O为坐标原点).证明:总存在一个确定的圆与直线l相切,并求该圆的方程22.(10分)如图1是直角梯形,以为折痕将折起,使点C到达的位置,且平面与平面垂直,如图2(1)求异面直线与所成角的余弦值;(2)在棱上是否存在点P,使平面与平面的夹角为?若存在,则求三棱锥的体积,若不存在,则说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.2、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B3、A【解析】求出直线的斜率,可求得边上的高所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】直线的斜率为,故边上的高所在直线的斜率为,因此,边上的高所在直线的方程为.故选:A.4、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A5、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A6、D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D7、D【解析】已知两圆方程,可先让两圆方程作差,得到其公共弦的方程,然后再计算圆心到直线的距离,再结合勾股定理即可完成弦长的求解.【详解】已知圆,圆,两圆方程作差,得到其公共弦的方程为::,而圆心到直线的距离为,圆的半径为,所以,所以.故选:D.8、C【解析】利用函数在上单调递减即可求解.【详解】解:因为函数在上单调递减,所以若,,则;反之若,,则.所以若,则“”是“”的充要条件,故选:C.9、C【解析】利用逆否命题、命题的否定、充分必要性的概念逐一判断即可.【详解】对于A,“若,则”的逆否命题是“若,则”,正确;对于B,“”的否定是”,正确;对于C,“”等价于“或,∴“是"”的充分不必要条件,错误;对于D,“或是"”的充要条件,正确.故选:C10、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B11、A【解析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.12、B【解析】由空间向量的加法的平行四边形法则和三角形法则,可得所求向量【详解】连接,可得,又,所以故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导得有两个极值点等价于函数有一个不等于1的零点,分离参数得,令,利用导数研究的单调性并作出的图象,根据图象即可得出k的取值范围【详解】函数的定义域为,,令,解得或,若函数有2个极值点,则函数与图象在上恰有1个横坐标不为1的交点,而,令,令或,故在和上单调递减,在上单调递增,又,如图所示,由图可得.故答案为:14、【解析】根据两直线的位置关系求解.【详解】因为过点和的直线与直线平行,所以,解得,故答案为:315、【解析】因为为圆的弦的中点,所以圆心坐标为,,所在直线方程为,化简为,故答案为.考点:1、两直线垂直斜率的关系;2、点斜式求直线方程.16、【解析】首先判定点在曲线上,然后利用导数的几何意义求得答案.【详解】由题意可知点在曲线上,而,故曲线在点处的切线斜率为,所以切线方程:,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)(II)【解析】(I)以,,为x,y,z轴建立空间直角坐标系A﹣xyz,可得和的坐标,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),由可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=,进而可得答案解:(I)以,,x,y,z轴建立空间直角坐标系A﹣xyz,则可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴异面直线A1B,AC1所成角的余弦值为:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),则可得,即,取x=1可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=∴直线AB1与平面C1AD所成角的正弦值为:考点:异面直线及其所成的角;直线与平面所成的角18、(1)a0.3,72000人;(2)众数2.25;中位数2.04.【解析】(1)根据所有小长方形面积和为1即可求得参数,结合题意求得用水量不少于3吨对应的频率,再求频数即可;(2)根据频率分布直方图直接写出众数,根据中位数的求法,结合频率的计算,即可容易求得结果.【小问1详解】由频率分布直方图,可知:,解得;月均用水量不少于3吨的人数为:(人)【小问2详解】由图可估计众数为2.25;设中位数为x吨,因为前5组的频率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组频率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位数为2.04吨.19、(1)(2)或【解析】(1)由已知可得交点坐标,再根据直线间的位置关系可得直线方程;(2)设直线方程,根据直线与两坐标轴围成的三角形的面积,列出方程组,解方程.【小问1详解】解:联立的方程,解得,即设直线的方程为:,将带入可得所以的方程为:;【小问2详解】解:法①:易知直线在两坐标轴上的截距均不为,设直线方程为:,则直线与两坐标轴交点为,由题意得,解得:或所以直线的方程为:或,即:或.法②:设直线的斜率为,则的方程为,当时,当时,所以,解得:或所以m的方程为或即:或.20、(1)证明见解析;(2).【解析】(1)连接与交于点O,连接OE,得到,再利用线面平行的判定定理证明即可;(2)根据,底面,建立空间直角坐标系,求得平面的一个法向量,再根据底面,得到平面一个法向量,然后由夹角公式求解.【小问1详解】如图所示:连接与交于点O,连接OE,如图,由分别为的中点所以,又平面,平面,所以平面;【小问2详解】由,底面,故底面建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为:,则,即,令,则,则,因为底面,所以为平面一个法向量,所以所以平面与平面CEB夹角的余弦值为.21、(1);(2)理由见解析,圆的方程为.【解析】(1)根据给定条件可得,结合勾股定理、椭圆定义求出a,b得解.(2)联立直线l与椭圆C的方程,利用给定条件求出k,m的关系,再求出原点O到直线l的距离即可推理作答.【小问1详解】因,则,点在椭圆C上,则椭圆C的半焦距,,,因此,,解得,,所以椭圆C的标准方程是:.【小问2详解】由消去y并整理得:,依题意,,设,,因,则,于是得,此时,,则原点O到直线l的距离,所以,存在以原点O为圆心,为半径的圆与直线l相切,此圆的方程为.【点睛】思路点睛:涉及动直线与圆锥曲线相交满足某个条件问题,可设直线方程为,再与圆锥曲线方程联立结合已知条件探求k,m的关系,然后推理求解.22、(1)(2)存在,靠近点D的三等分点.【解析】(1)由题意建立空间直接坐标系,求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论