版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市厦门第一中学2025届高二上数学期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆C:的左,右焦点,过原点的直线l与椭圆C相交于M,N两点.其中M在第一象限.,则椭圆C的离心率的取值范围为()A. B.C. D.2.已知抛物线的焦点恰为双曲线的一个顶点,的另一顶点为,与在第一象限内的交点为,若,则直线的斜率为()A. B.C. D.3.函数的图象大致为()A. B.C. D.4.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球5.如图,在四面体中,,,,点为的中点,,则()A. B.C. D.6.已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()A B.C. D.7.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.28.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为()A. B.C. D.9.在数列中,,则的值为()A. B.C. D.以上都不对10.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.11.某产品的销售收入(万元)是产量x(千台)的函数,且函数解析式为,生产成本(万元)是产量x(千台)的函数,且函数解析式为,要使利润最大,则该产品应生产()A.6千台 B.7千台C.8千台 D.9千台12.已知数列的前项和为,当时,()A.11 B.20C.33 D.35二、填空题:本题共4小题,每小题5分,共20分。13.已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;14.关于曲线C:1,有如下结论:①曲线C关于原点对称;②曲线C关于直线x±y=0对称;③曲线C是封闭图形,且封闭图形的面积大于2π;④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;⑤曲线C与曲线D:|x|+|y|=2有4个公共点,这4点构成正方形其中正确结论的个数是_____15.某市开展“爱我内蒙,爱我家乡”摄影比赛,9位评委给参赛作品A打出的分数如茎叶图所示,记分员算得平均分为91,复核员在复核时,发现一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______16.从正方体的8个顶点中选取4个作为项点,可得到四面体的概率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的图象在点处的切线方程;(2)求函数的极值18.(12分)三棱柱中,侧面为菱形,,,,(1)求证:面面;(2)在线段上是否存在一点M,使得二面角为,若存在,求出的值,若不存在,请说明理由19.(12分)已知,对于有限集,令表示集合中元素的个数.例如:当时,,(1)当时,请直接写出集合的子集的个数;(2)当时,,都是集合的子集(,可以相同),并且.求满足条件的有序集合对的个数;(3)假设存在集合、具有以下性质:将1,1,2,2,··,,.这个整数按某种次序排成一列,使得在这个序列中,对于任意,与之间恰好排列个整数.证明:是4的倍数20.(12分)已知圆C:x2+y2+2ax﹣3=0,且圆C上存在两点关于直线3x﹣2y﹣3=0对称.(1)求圆C的半径r;(2)若直线l过点A(2,),且与圆C交于MN,两点,|MN|=2,求直线l的方程.21.(12分)2021年7月29日,中国游泳队获得了女子米自由泳接力决赛冠军并打破世界纪录.受奥运精神的鼓舞,某游泳俱乐部组织100名游泳爱好者进行自由泳1500米测试,并记录他们的时间(单位:分钟),将所得数据分成5组:,,,,,整理得到如图所示的频率分布直方图.(1)求出直方图中m的值;(2)利用样本估计总体的思想,估计这100位游泳爱好者1500米自由泳测试时间的平均数和中位数(同一组中的数据用该组区间中点值作代表).22.(10分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题设易知四边形为矩形,可得,结合已知条件有即可求椭圆C的离心率的取值范围.【详解】由椭圆的对称性知:,而,又,即四边形为矩形,所以,则且M在第一象限,整理得,所以,又即,综上,,整理得,所以.故选:D.【点睛】关键点点睛:由椭圆的对称性及矩形性质可得,由已知条件得到,进而得到椭圆参数的齐次式求离心率范围.2、D【解析】根据题意,列出的方程组,解得,再利用斜率公式即可求得结果.【详解】因为抛物线的焦点,由题可知;又点在抛物线上,故可得;又,联立方程组可得,整理得,解得(舍)或,此时,又,故直线的斜率为.故选:D.3、A【解析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项4、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C5、B【解析】利用插点的方法,将归结到题目中基向量中去,注意中线向量的运用.【详解】.故选:B.6、B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.7、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.8、A【解析】根据双曲线渐近线方程得a和b的关系,根据焦点在抛物线准线上得c的值,结合a、b、c关系即可求解.【详解】∵双曲线的一条渐近线方程是,∴,∵准线方程是,∴,∵,∴,,∴双曲线标准方程为:.故选:A.9、C【解析】由数列的递推公式可先求数列的前几项,从而发现数列的周期性的特点,进而可求.【详解】解:,数列是以3为周期的数列故选:【点睛】本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由递推关系发现数列的周期性的特点,属于基础题.10、B【解析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B11、A【解析】构造利润函数,求导,判断单调性,求得最大值处对应的自变量即可.【详解】设利润为y万元,则,∴.令,解得(舍去)或,经检验知既是函数的极大值点又是函数的最大值点,∴应生产6千台该产品.故选:A【点睛】利用导数求函数在某区间上最值的规律:(1)若函数在区间上单调递增或递减,与一个为最大值,一个为最小值(2)若函数在闭区间上有极值,要先求出上的极值,与,比较,最大的是最大值,最小的是最小值,可列表完成(3)函数在区间上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到12、B【解析】由数列的性质可得,计算可得到答案.【详解】由题意,.故答案为B.【点睛】本题考查了数列的前n项和的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)详见解析【解析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.14、4【解析】直接利用曲线的性质,对称性的应用可判断①②;求出可判断③;联立方程,解方程组可判断④⑤的结论【详解】对于①,将方程中的x换为﹣x,y换为﹣y,方程不变,曲线C关于原点对称,故①正确;对于②,将方程中的x换为﹣y,把y换成﹣x,方程不变,曲线C关于直线x±y=0对称,故②正确;对于③,由方程得,故曲线C不是封闭图形,故③错误;对于④,曲线C:,不是封闭图形,联立整理可得:,方程无解,故④正确;对于⑤,曲线C与曲线D:由于,解得,根据对称性,可得公共点为,故曲线C与曲线D有四个交点,这4点构成正方形,故⑤正确故答案为:415、1【解析】由平均数列出方程,求出x的值.【详解】由题意得:,解得:.故答案为:116、【解析】计算出正方体的8个顶点中选取4个作为项点的取法和分从上底面取一个点下底面取三个点、从上底面取二个点下底面取二个点、从上底面取三个点下底面取一个点可得到四面体的取法,由古典概型概率计算公式可得答案.【详解】正方体的8个顶点中选取4个作为项点,共有取法,可得到四面体的情况有从上底面取一个点下底面取三个点有种;从上底面取二个点下底面取二个点有种,其中当上底面和下底面取的四个点在同一平面时共有10种情况不符合,此种情况共有种;从上底面取三个点下底面取一个点有种;一个有种,所以可得到四面体的概率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)极大值为12,极小值-15【解析】(1)利用导数的几何意义求解即可.(2)利用导数求解极值即可.【小问1详解】,,切点为,故切线方程为,即;【小问2详解】令,得或列表:-12+0-0+单调递增12单调递减-15单调递增函数的极大值为,函数的极小值为.18、(1)证明见解析;(2)【解析】(1)取BC的中点O,连结AO、,在三角形中分别证明和,再利用勾股定理证明,结合线面垂直的判定定理可证明平面,再由面面垂直的判定定理即可证明结果.(2)建立空间直角坐标系,假设点M存在,设,求出M点坐标,然后求出平面的法向量,利用空间向量的方法根据二面角的平面角为可求出的值.【详解】(1)取BC的中点O,连结AO,,,为等腰直角三角形,所以,;侧面为菱形,,所以三角形为为等边三角形,所以,又,所以,又,满足,所以;因为,所以平面,因为平面中,所以平面平面.(2)由(1)问知:两两垂直,以O为坐标原点,为轴,为轴,为轴建立空间之间坐标系.则,,,,若存在点M,则点M在上,不妨设,则有,则,有,,设平面的法向量为,则解得:平面的法向量为则解得:或(舍)故存在点M,.【点睛】本题考查立体几何探索是否存在的问题,属于中档题.方法点睛:(1)判断是否存在的问题,一般先假设存在;(2)设出点坐标,作为已知条件,代入计算;(3)根据结果,判断是否存在.19、(1)8(2)454(3)证明见详解【解析】(1)n元集合的直接个数为可得;(2)由已知结合可得,或,然后可得集合的包含关系可解;(3)根据每两个相同整数之间的整数个数之和与总的数字个数之间的关系可证.【小问1详解】当时,集合的子集个数为【小问2详解】易知,又,所以,即,得,或,所以或1)若,则满足条件的集合对共有,2)若,同理,满足条件集合对共有2433)当A=B时,满足条件的集合对共有所以,满足条件集合对共243+243-32=454个.【小问3详解】记,则1,1,2,2,··,,共2n个正整数,将这2n个正整数按照要求排列时,需在1和1中间放入1个数,在2和2中间放入2个数,…,在n和n中间放入n个数,共放入了个数,由于排列完成后共有2n个数,且1,1,2,2,··,,刚好放完,所以放入数字个数必为偶数,即Z,所以,Z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店面租房合同(2篇)
- 爆破工程合同范本示例
- 绿色水稻购销协议
- 云计算配件销售协议
- 二零二四年度软件开发合同标的及服务内容
- 核桃果实采购协议格式
- 可靠活动服务合同
- 会议服务合同协议书的争议解决
- 招标货物运输合作项目招标
- 挖掘机采购合同文本
- 巴巴爸爸经典系列巴巴爸爸的学校
- 第二讲社会主义从空想到科学的发展
- 第12章DIC病生课件
- 企业延续取水评估报告
- 会阴血肿护理查房课件
- 太阳能供热和空气源热泵对比
- 酒店客房部服务质量不达标扣分标准
- 自身免疫性溶血性贫血最全课件
- 强化学习与大模型
- 急性酒精中毒诊治专家共识
- Unit4+Natural+Disarster+Language+points(1)+课件【知识精讲精研】高中英语人教版(2019)必修第一册
评论
0/150
提交评论