四川达州新世纪学校2024年数学九年级第一学期开学考试试题【含答案】_第1页
四川达州新世纪学校2024年数学九年级第一学期开学考试试题【含答案】_第2页
四川达州新世纪学校2024年数学九年级第一学期开学考试试题【含答案】_第3页
四川达州新世纪学校2024年数学九年级第一学期开学考试试题【含答案】_第4页
四川达州新世纪学校2024年数学九年级第一学期开学考试试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页四川达州新世纪学校2024年数学九年级第一学期开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如果有意义,那么实数x的取值范围是()A.x≥0 B.x≠2 C.x≥2 D.x≥-22、(4分)人体血液中,红细胞的直径约为0.0000077m.用科学记数法表示0.0000077m是()A.0.77×10﹣5 B.7.7×10﹣5 C.7.7×10﹣6 D.77×10﹣73、(4分)如果成立,那么实数a的取值范围是()A. B. C. D.4、(4分)一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)一次函数y=k-2x+3的图像如图所示,则k的取值范围是(A.k>3 B.k<3 C.k>2 D.k<26、(4分)分式-11-x可变形为(A.-1x-1 B.1x-1 C.7、(4分)一个多边形的每个内角均为108°,则这个多边形是()边形.A.4 B.5 C.6 D.78、(4分)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,则平行四边形ABCD的周长___________.10、(4分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.11、(4分)写出一个图象经过点(1,﹣2)的函数的表达式:_____.12、(4分)若关于x的一元一次不等式组有解,则m的取值范围为__________.13、(4分)李老师到超市买了xkg香蕉,花费m元钱;ykg苹果,花费n元钱.若李老师要买3kg香蕉和2kg苹果共需花费_____元.三、解答题(本大题共5个小题,共48分)14、(12分)求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)15、(8分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.特例感知:(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;①当△ABC是一个等边三角形时,AF与BC的数量关系是:;②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.16、(8分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.17、(10分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.18、(10分)如图,,分别以为圆心,以长度5为半径作弧,两条弧分别相交于点和,依次连接,连接交于点.(1)判断四边形的形状并说明理由(2)求的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,中,,,,为的中点,若动点以1的速度从点出发,沿着的方向运动,设点的运动时间为秒(),连接,当是直角三角形时,的值为_____.20、(4分)不等式组恰有两个整数解,则实数的取值范围是______.21、(4分)当_____时,分式的值为1.22、(4分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为23、(4分)计算+()2=________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.(1)求的值;(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.25、(10分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.26、(12分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF(1)求证:四边形EDFG是正方形;(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据二次根式有意义的条件即可求出x的取值范围.【详解】由题意可知:x+2≥0,∴x≥-2故选D.本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件.2、C【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:故选C.3、B【解析】

即故选B.4、C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.5、D【解析】

根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.6、B【解析】

根据分式的基本性质进行变形即可.【详解】-11-x=故选B.此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7、B【解析】

首先求得外角的度数,然后利用360除以外角的度数即可求解.【详解】外角的度数是:180-108=72°,

则这个多边形的边数是:360÷72=1.故选B.8、C【解析】

解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.二、填空题(本大题共5个小题,每小题4分,共20分)9、39【解析】

根据角平分线和平行得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE,根据勾股定理求得BC=13cm,根据等腰三角形性质得到AB,CD,从而求得周长.【详解】在中,∵,AB=CD∴∵BE、CE分别平分∠ABC、∠BCD∴∴,∴∵∴∵BE平分∴∴,同理可得,∴∴的周长为:故答案为:.本题考查了等腰三角形和直角三角形的性质,解题的关键在于利用等腰三角形和直角三角形的性质求得平行四边形中一组对边的长度.10、【解析】

先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.【详解】∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为,故答案为.本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11、【解析】

设y=kx,把点(1,﹣2)代入即可(答案不唯一).【详解】设y=kx,把点(1,﹣2)代入,得k=-2,∴(答案不唯一).故答案为:.本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.12、m.【解析】

首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【详解】,解①得:x<2m,解②得:x>2﹣m,根据题意得:2m>2﹣m,解得:m.故答案为:m.本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13、【解析】

根据题意可以列出相应的代数式,本题得以解决.【详解】由题意可得:李老师要买3kg香蕉和2kg苹果共需花费:()(元).故答案为.本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.三、解答题(本大题共5个小题,共48分)14、证明见解析.【解析】

已知条件的基础上,根据平行四边形的判定方法,只需证明另一组对边平行或另一组对角相等.【详解】已知:如图,四边形ABCD中,AB∥CD,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.15、(1)AF=BC;a;(2)猜想:AF=BC,(3)【解析】

(1)①先判断出AD=AE=AB=AC,∠DAE=120°,进而判断出∠ADE=30°,再利用含30度角的直角三角形的性质即可得出结论;②先判断出△ABC≌△ADE,利用直角三角形的性质即可得出结论;(2)先判断出△AEG≌△ACB,得出EG=BC,再判断出DF=EF,即可得出结论;(3)先判断出四边形PHCD是矩形,进而判断出∠DPC=30°,再判断出PB=PC,进而求出∠APB=150°,即可利用“夹补三角形”即可得出结论.【详解】解:(1)∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夹补中线”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案为:AF=BC;②当△ABC是直角三角形时,∠BAC=90°,∵∠DAE=90°=∠BAC,易证,△ABC≌△ADE,∴DE=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=DE=BC=a,故答案为a;(2)解:猜想:AF=BC,理由:如图1,延长DA到G,使AG=AD,连EG∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=EG,∴AF=BC;(3)证明:如图4,∵△PAD是等边三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四边形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC=,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夹补三角形”,由(2)知,CD=,∴△PAB的“夹补中线”=.此题是四边形综合题,主要考查了全等三角形的判定和性质,含30度角的直角三角形的性质,锐角三角函数,新定义的理解和掌握,理解新定义是解本题的关键.16、见试题解析【解析】试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.证明:如图,连接PC,∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=PC,所以EF=AP.17、(Ⅰ)40,1;(Ⅱ)平均数是1.2,众数为1.2,中位数为1.2;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为3.【解析】

(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;

(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;

(Ⅲ)利用总人数乘以对应的百分比即可求解.【详解】解:(Ⅰ)本次接受调查的初中学生人数为:4+8+12+10+3=40(人),

m=100×=1.

故答案是:40,1;

(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.2.∵在这组数据中,1.2出现了12次,出现的次数最多,∴这组数据的众数为1.2.∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.2,有,∴这组数据的中位数为1.2.(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1h的人数约占90%.有.∴该校800名初中学生中,每天在校体育活动时间大于1h的学生人数约为3.本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18、(1)见解析(2)6【解析】

(1)利用作法得到四边相等,从而可判断四边形ABCD为菱形;(2)根据菱形的性质得OA=OC=4,OB=OD,AC⊥BD,然后利用勾股定理计算出OB,从而得到BD的长【详解】(1)由图可知,垂直平分,且所以,四边形为菱形.(2)因为且平分.在中,的长为6.此题考查菱形的判定,垂直平分线的应用,解题关键在于得到四边相等一、填空题(本大题共5个小题,每小题4分,共20分)19、2或6或3.1或4.1.【解析】

先求出AB的长,再分①∠BDE=90°时,DE是ΔABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠ABC的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.【详解】解:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=BC÷=2÷=4,①∠BDE=90°时,如图(1)∵D为BC的中点,∴DE是ΔABC的中位线,∴AE=AB=×4=2,点E在AB上时,t=2÷1=2秒,点E在BA上时,点E运动的路程为4×2-2=6,t=6÷1=6;②∠BED=90°时,如图(2)BE=BD=×2×=点E在AB上时,t=(4-0.1)÷1=3.1,点E在BA上时,点E运动的路程为4+0.1=4.1,t=4.1÷1=4.1,综上所述,t的值为2或6或3.1或4.1.故答案为:2或6或3.1或4.1.掌握三角形的中位线,三角形的中位线平行于第三边并且等于第三边的一半.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.20、【解析】

首先利用不等式的基本性质解不等式组,从不等式的解集中找出适合条件的整数解,再进一步确定字母的取值范围即可.【详解】解:对于,解不等式①得:,解不等式②得:,因为原不等式组有解,所以其解集为,又因为原不等式组恰有两个整数解,所以其整数解应为7,8,所以实数a应满足,解得.故答案为.本题考查了不等式组的解法和整数解的确定,解题的关键是熟练掌握不等式的基本性质,尤其是性质3,即不等式的两边都乘以或除以一个负数时,不等号的方向要改变,这在解不等式时要随时注意.21、.【解析】

分式值为零的条件:分子为零且分母不为零,即且.【详解】分式的值为1且解得:故答案为.从以下三个方面透彻理解分式的概念:分式无意义分母为零;分式有意义分母不为零;分式值为零分子为零且分母不为零.22、1或32【解析】

当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.

②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=1,BC=4,

∴AC=42+32=5,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

设BE=x,则EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得x=32,

∴BE=32;

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,∴BE=AB=1.

综上所述,BE的长为32或23、6【解析】

根据二次根式的性质计算.【详解】原式=3+3=6.故答案为:6.考查二次根式的运算,掌握是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1).(2)①判断:.理由见解析;②或.【解析】

(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论