山西省阳泉市名校2024年九年级数学第一学期开学学业质量监测试题【含答案】_第1页
山西省阳泉市名校2024年九年级数学第一学期开学学业质量监测试题【含答案】_第2页
山西省阳泉市名校2024年九年级数学第一学期开学学业质量监测试题【含答案】_第3页
山西省阳泉市名校2024年九年级数学第一学期开学学业质量监测试题【含答案】_第4页
山西省阳泉市名校2024年九年级数学第一学期开学学业质量监测试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山西省阳泉市名校2024年九年级数学第一学期开学学业质量监测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是80%”,则对该同学的说法理解最合理的是()A.小东夺冠的可能性较大 B.如果小东和他的对手比赛10局,他一定会赢8局C.小东夺冠的可能性较小 D.小东肯定会赢2、(4分)在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.450 B.600 C.750 D.12003、(4分)下列说法中,其中不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④算术平方根不可能是负数.A.0个 B.1个 C.2个 D.3个4、(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形 B.当AC⊥BD时,四边形ABCD是菱形C.当AC=BD时,四边形ABCD是矩形 D.当∠ABC=90°时,四边形ABCD是正方形5、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)

5

6

7

8

人数

10

15

20

5

则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时 B.6.4小时 C.6.5小时 D.7小时6、(4分)定义一种新运算:当时,;当时,.若,则的取值范围是()A.或 B.或C.或 D.或7、(4分)小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是()A. B. C. D.8、(4分)下列多项式中不能用公式进行因式分解的是()A.a2+a+ B.a2+b2-2ab C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)10、(4分)正比例函数图象经过,则这个正比例函数的解析式是_________.11、(4分)一组数据5,7,2,5,6的中位数是_____.12、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,若AC=8,BD=6,则该菱形的周长是___.13、(4分)因式分解:2x2-18三、解答题(本大题共5个小题,共48分)14、(12分)解方程:=-.15、(8分)如图,在▱ABCD中,AC、BD交于点O,BD⊥AD于点D,将△ABD沿BD翻折得到△EBD,连接EC、EB.(1)求证:四边形DBCE是矩形;(2)若BD=4,AD=3,求点O到AB的距离.16、(8分)如图,在平行四边形ABCD中,点E、F在对角线BD上,且BF=DE(1)求证:△ADE≌△CBF.(2)若AE=3,AD=4,∠DAE=90°,该判断当BE的长度为多少时,四边形AECF为菱形,并说明理由.17、(10分)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.01.02.03.04.04.54.144.55.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP.18、(10分)如图,在矩形中,,分别在,上.(1)若,.①如图1,求证:;②如图2,点为延长线上一点,的延长线交于,若,求证:;(2)如图3,若为的中点,.则的值为(结果用含的式子表示)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知、满足方程组,则的值为__________.20、(4分)若方程有增根,则m的值为___________;21、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=6cm,GH=8cm,则边AB的长是__________22、(4分)若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.23、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.二、解答题(本大题共3个小题,共30分)24、(8分)计算(1);(2)25、(10分)某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如下表所示:汽车型号安全性能省油效能外观吸引力内部配备A3123B3222(得分说明:3分﹣﹣极佳,2分﹣﹣良好,1分﹣﹣尚可接受)(1)技术员认为安全性能、省油效能、外观吸引力、内部配备这四项的占比分别为30%,30%,20%,20%,并由此计算得到A型汽车的综合得分为2.2,B型汽车的综合得分为_____;(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B型汽车的综合得分.(说明:每一项的占比大于0,各项占比的和为100%)答:安全性能:_____,省油效能:_____,外观吸引力:_____,内部配备:_____.26、(12分)如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.

求证:四边形AECF是平行四边形.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

根据题意主要是对可能性的判断,注意可能性不是一定.【详解】根据题意可得小东夺冠的可能性为80%,B选项错误,因为不是一定赢8局,而是可能赢8局;C选项错误,因为小东夺冠的可能性大于50%,应该是可能性较大;D选项错误,因为可能性只有80%,不能肯定能赢.故选A本题主要考查同学们对概率的理解,概率是一件事发生的可能性,有可能发生,也有可能不发生.2、B【解析】分析:根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.详解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:B.点睛:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.3、D【解析】

①②③④分别根据平方根和算术平方根的概念即可判断.【详解】解:根据平方根概念可知:①负数没有算术平方根,故错误;②反例:0的算术平方根是0,故错误;③当a<0时,a2的算术平方根是﹣a,故错误;④算术平方根不可能是负数,故正确.所以不正确的有①②③.故选D.考核知识点:算术平方根.4、D【解析】

根据邻边相等的平行四边形是菱形;根据对角线互相垂直的平行四边形是菱形;根据对角线相等的平行四边形是矩形;根据有一个角是直角的平行四边形是矩形.【详解】解:∵四边形ABCD是平行四边形,则A、当AB=BC时,四边形ABCD是菱形,正确;B、当AC⊥BD时,四边形ABCD是菱形,正确;C、当AC=BD时,四边形ABCD是矩形,正确;D、当∠ABC=90°时,四边形ABCD是矩形,故D错误;故选:D.本题考查了菱形的判定和矩形的判定,解题的关键是熟练掌握菱形和矩形的判定定理.5、B【解析】平均数是指在一组数据中所有数据之和再除以数据的个数.因此,这50名学生这一周在校的平均体育锻炼时间是=6.4(小时).故选B.6、C【解析】

分3>x+2即x<1和3<x+2即x>1两种情况,根据新定义列出不等式求解可得.【详解】当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>−2,∴−2<x<1;当3<x+2,即x>1时,3(x+2)−(x+2)>0,解得:x>−2,∴x>1,综上,−2<x<1或x>1,故选:C.7、D【解析】

剩余的钱=原有的钱-用去的钱,可列出函数关系式.【详解】剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50−8x.故选D此题考查根据实际问题列一次函数关系式,解题关键在于列出方程8、D【解析】【分析】A.B可以用完全平方公式;C.可以用完全平方公式;D.不能用公式进行因式分解.【详解】A.,用完全平方公式;B.,用完全平方公式;C.,用平方差公式;D.不能用公式.故正确选项为D.【点睛】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.二、填空题(本大题共5个小题,每小题4分,共20分)9、减小【解析】【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小,故答案为减小.【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.10、【解析】

设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.【详解】解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,−6),∴−6=3k,解得k=−2,∴y=−2x.故答案是:y=−2x.此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.11、1【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:将数据从小到大排列2,1,1,6,7,

因此中位数为1.

故答案为1本题考查了中位数,正确理解中位数的意义是解题的关键.12、20【解析】

根据菱形的对角线互相垂直及勾股定理即可求解.【详解】依题意可知BD⊥AC,AO=4,BO=3∴AB==5,∴菱形的周长为4×5=20此题主要考查菱形的周长计算,解题的关键是熟知菱形的对角线垂直.13、2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.三、解答题(本大题共5个小题,共48分)14、【解析】

先确定最简公分母是,将方程两边同时乘以最简公分母约去分母可得:,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:,解得:,经检验是分式方程的解.本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.15、(1)见解析;(2)点O到AB的距离为.【解析】

(1)先利用折叠的性质和平行四边形的性质得出DE∥BC,DE=BC,则四边形DBCE是平行四边形,再利用BE=CD即可证明四边形DBCE是矩形;(2)过点O作OF⊥AB,垂足为F,先利用勾股定理求出AB的长度,然后利用面积即可求出OF的长度,则答案可求.【详解】(1)由折叠性质可得:AD=DE,BA=BE,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BA=CD,∴DE∥BC,DE=BC,∴四边形DBCE是平行四边形,又∵BE=CD,∴四边形DBCE是矩形.(2)过点O作OF⊥AB,垂足为F,∵BD⊥AD,∴∠ADB=90°,在Rt△ADB中,BD=4,AD=3,由勾股定理得:AB=,又∵四边形ABCD是平行四边形,∴OB=OD=,∴答:点O到AB的距离为.本题主要考查平行四边形的性质,矩形的判定,勾股定理,掌握平行四边形的性质,矩形的判定,勾股定理并能够利用三角形面积进行转化是解题的关键.16、(1)证明见解析;(2)BE的长度为时,四边形AECF为菱形.【解析】

(1)由平行四边形的性质可得∠ADE=∠CBF,AD=BC,利用SAS即可证明△ADE≌△CBF;(2)连接AC,设BE=x,AC、EF相交于O,利用勾股定理可求出DE的长,即可用x表示出OE和OB的长,由菱形的性质可得AC⊥EF,即可证明平行四边形ABCD是菱形,可得AB=AD=4,在Rt△AOB和Rt△AOE中,分别利用勾股定理表示出OA2,列方程求出x的值即可得答案.【详解】(1)∵平行四边形ABCD,∴AD//BC,∴∠∠ADE=∠CBF,AD=BC,又∵BF=DE,∴△ADE≌△CBF.(2)BE的长度为时,四边形AECF为菱形.理由如下:连接AC,设BE=x,AC、EF相交于O,∵AE=3,AD=4,∠DAE=90°,∴BF=DE==5,∴OE=,OB=,∵四边形AECF为菱形,∴AC⊥EF,∴平行四边形ABCD是菱形,∴AB=AD=4,在Rt△AOB和Rt△AOE中,OA2=AB2-OB2=AE2-OE2,即42-()2=32-()2,解得:x=.∴BE的长度为时,四边形AECF为菱形.本题考查了全等三角形的判定、菱形的判定与性质,根据对角线互相垂直的平行四边形是菱形,得出平行四边形ABCD是菱形,进而求出AB的长是解题关键.17、(1)见解析,5.0;4.1;(2)见解析;(3)2.5或9.1【解析】

(1)根据点P在第5秒与第9秒的位置,分别求出BP的长,即可得到答案;(2)根据表格中的x,y的对应值,描点、连线,画出函数图象,即可;(3)令CP=y′,确定P在BC和AC上时,得y′=-x+5或y′=x-5,画出图象,得到图象的交点的横坐标,即可求解.【详解】(1)当x=5时,点P与点C重合,y=5,当x=9时,点P在AC边上,且CP=9×1-5=4cm,过点B作BD⊥AC于点D,则CD=AC=3cm,BD=cm,∴DP=CP-CD=4-3=1cm,BP=cm,即:y=4.1.如下表:x01234567891011y0.01.02.03.04.05.04.54.14.04.14.55.0故答案为:5.0;4.1;(2)描点、连线,画出函数图象如下:(3)令CP=y′,当0≤x≤5时,y′=-x+5;当5<x≤11时,y′=x-5,画出图象可得:当x=2.5或9.1时,BP=PC.故答案为:2.5或9.1.本题主要考查动点问题的函数图象,理解图表的信息,掌握描点、连线,画出函数图象,理解当BP=CP时,x的值是函数图象的交点的横坐标,是解题的关键.18、(1)①见解析;②见解析;(2)【解析】

(1)①由“ASA”可证△ADE≌△BAF可得AE=BF;②过点A作AF⊥HD交BC于点F,由等腰三角形的性质和平行线的性质可得∠HAF=∠AFG=∠DAF,可得AG=FG,即可得结论;(2)过点E作EH⊥DF于H,连接EF,由角平分线的性质可得AE=EH=BE,由“HL”可证Rt△BEF≌Rt△HEF,可得BF=FH,由勾股定理可求解.【详解】证明(1)①∵四边形ABCD是矩形,AD=AB,∴四边形ABCD是正方形,∴AD=AB,∠DAB=90°=∠ABC,∴∠DAF+∠BAF=90°,∵AF⊥DE,∴∠DAF+∠ADE=90°,∴∠ADE=∠BAF,且AD=AB,∠DAE=∠ABF=90°,∴△ADE≌△BAF(ASA),∴AE=BF;②如图,过点A作AF⊥HD交BC于点F,由(1)可知AE=BF,∵AH=AD,AF⊥HD,∴∠HAF=∠DAF.∵AD∥BC,∴∠DAF=∠AFG,∴∠HAF=∠AFG,∴AG=GF,∴AG=GB+BF=GB+AE;(3)如图,过点E作EH⊥DF于H,连接EF,∵E为AB的中点,∴AE=BE=AB,∵∠ADE=∠EDF,EA⊥AD,EH⊥DF,∴AE=EH,AD=DH=nAB,∴BE=EH,EF=EF,∴Rt△BEF≌Rt△HEF(HL),∴BF=FH,设BF=x=FH,则FC=BC-BF=nAB-x,∵DF2=FC2+CD2,∴(nAB+x)2=(nAB-x)2+AB2,∴x==BF,∴FC=AB,∴=4n2-1.本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、-80【解析】

先将所求的式子分解因式,再把已知的式子整体代入计算即可.【详解】解:,故答案为-80.本题考查了多项式的因式分解和整体代入的数学思想,正确的进行多项式的因式分解是解题的关键.20、-4或6【解析】

方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.【详解】方程两边同乘(x-2)(x+2),得2(x+2)+mx=3(x-2)∵原方程有增根,∴最简公分母(x+2)(x-2)=0,解得x=-2或2,当x=-2时,m=6,当x=2时,m=-4,故答案为:-4或6.本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21、.【解析】

利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得GE的长,进而求出HM,AB即为边2HM的长.【详解】解:∵∠HEM=∠HEB,∠GEF=∠CEF,∴∠HEF=∠HEM+∠GEF=∠BEG+∠GEC=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∵EH=6cm,GH=8cm,∴GE=10由折叠可知,HM⊥GE,AH=HM,BH=HM,∵,∴AB=AH+BH=2HM=2×=.故答案为.此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.22、0(答案不唯一)【解析】

利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【详解】△=62-4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,所以m=0满足条件.故答案为:0(答案不唯一).本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论