版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页山西省定襄县2024-2025学年九年级数学第一学期开学预测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若式子在实数范围内有意义,则的取值范围是()A. B. C. D.2、(4分)如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b的解集正确的是()A.x>﹣1 B.x>1 C.x<1 D.x<﹣13、(4分)某班名学生的身高情况如下表:身高(m)人数关于身高的统计量中,不随、的变化而变化的有()A.众数,中位数 B.中位数,方差 C.平均数,方差 D.平均数,众数4、(4分)某地开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么所列方程正确的是()A. B.C. D.5、(4分)如图,在中,,,是边的中点,则的度数为()A.40° B.50° C.60° D.80°6、(4分)经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和()A.比原多边形多 B.比原多边形少 C.与原多边形外角和相等 D.不确定7、(4分)下列命题的逆命题是真命题的是()A.对顶角相等 B.全等三角形的面积相等C.两直线平行,内错角相等 D.等边三角形是等腰三角形8、(4分)下列图形中是中心对称图形,但不是轴对称图形的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___10、(4分)如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.11、(4分)在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.12、(4分)如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.13、(4分)如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.三、解答题(本大题共5个小题,共48分)14、(12分)已知方程组,当m为何值时,x>y?15、(8分)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.16、(8分)在Rt△ABC中,∠B=900,AC=100cm,∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。(1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。(2)当t为何值时,△DEF为直角三角形?请说明理由。17、(10分)计算(1)计算:(2)分解因式:18、(10分)阅读材料:分解因式:x2+2x-3解:原式=x2+2x+1-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2-2x-3=_______;a2-4ab-5b2=_______;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式﹣2x>﹣4的正整数解为_____.20、(4分)如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;21、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.22、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.23、(4分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.二、解答题(本大题共3个小题,共30分)24、(8分)如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与DO相反的向量______;(2)填空:AO+BC+OB=______;(3)求作:OC+AB(保留作图痕迹,不要求写作法).25、(10分)如图,在平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)证明:AE⊥BF;(2)证明:DF=CE.26、(12分)如图,在四边形ABCD中,,E为BD中点,延长CD到点F,使.求证:求证:四边形ABDF为平行四边形
若,,,求四边形ABDF的面积
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
由二次根式的性质可以得到x-1≥0,由此即可求解.【详解】解:依题意得:x-1≥0,∴x≥1.故选:D.此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2、A【解析】
根据图象求解不等式,要使x+a>kx+b,则必须在y1=x+a在y2=kx+b上方,根据图形即可写出答案.【详解】解:因为直线y1=x+a与y2=kx+b相交于点P(﹣1,2)要使不等式x+a>kx+b,则必须在y1=x+a在y2=kx+b上方所以可得x>﹣1时,y1=x+a在y2=kx+b上方故选A.本题主要考查利用函数图形求解不等式,关键在于根据图象求交点坐标.3、A【解析】
根据统计表可求出中位数和众数,无法求出平均数和方差,根据所求结果即可解答.【详解】∵x+y=30-6-8-5-4=7,1.53出现了8次,∴众数是1.53,中位数是(1.53+1.53)÷2=1.53,不随、的变化而变化;∵x与y的值不确定,∴无法求出平均数和方差.故选A.此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.4、C【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:设原计划每天挖x米,则原计划用时为:天,实际用时为:天,∴,故选:C.本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.5、D【解析】
根据直角三角形斜边的中线等于斜边的中线一半,求解即可.【详解】解:∵,是边的中点,∴CD=BD,∴∠DCB=∠B=50°,∴∠CDB=180°-∠DCB-∠B=80°,故选D.本题考查了三角形的内角和定理及直角三角形的性质,解题的关键是掌握直角三角形斜边的中线等于斜边的一半.6、C【解析】
根据外角和的定义即可得出答案.【详解】多边形外角和均为360°,故答案选择C.本题考查的是多边形的外角和,比较简单,记住多边形的外角和均为360°.7、C【解析】
先分别写出各命题的逆命题,再根据对顶角的概念,全等三角形的判定,平行线的判定以及等腰三角形和等边三角形的关系分别判断即可得解.【详解】A、逆命题为:相等的两个角是对顶角,是假命题,故本选项错误;B、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项错误;C、逆命题为:内错角相等,两直线平行,是真命题,故本选项正确;D、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误.故选C.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、D【解析】
将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】A、是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形,故选:D.此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4,8)【解析】
由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x+(x-5)=25,解得x=4,即可求得D的坐标.【详解】由直线y=−x+10可知:B(0,10),∴OB=10,∵C是OB的中点,∴C(0,5),OC=5,∵CD=OC,∴CD=5,∵D是线段AB上一点,∴设D(x,-x+10),∴CD=∴解得x=4,x=0(舍去)∴D(4,8),故答案为:(4,8)此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算10、1【解析】
连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.11、丙【解析】
方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】因为=0.56,=0.60,=0.45,=0.50,所以<<<,由此可得成绩最稳定的为丙.故答案为:丙.此题考查方差,解题关键在于掌握其定义.12、b>c>a.【解析】
由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.13、1【解析】
设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.【详解】设反比例函数的解析式是:y=,设A的点的坐标是(m,n).
则AB=m,OB=n,mn=k.
∵△ABP的面积为2,
∴AB•OB=2,即mn=2
∴mn=1,则k=mn=1.
故答案是:1.此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.三、解答题(本大题共5个小题,共48分)14、.【解析】
解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.【详解】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.15、(1)见解析;(2)见解析【解析】试题分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.考点:全等三角形的判定;菱形的判定;平行四边形的性质.16、(1)能,10;(2)或12,理由见解析.【解析】
(1)首先根据题意计算AB的长,再证明四边形AEFD是平行四边形,要成菱形则AD=AE,因此可得t的值.(2)要使△DEF为直角三角形,则有两种情况:①∠EDF=90°;②∠DEF=90°,分别计算即可.【详解】解:(1)能,∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=AC=×60=30cm。∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t。∴DF=AE。∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形。当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10。∴当t=10时,AEFD是菱形。(2)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=。②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t=2×60-8t,解得:t=12。综上所述,当t=或12时,△DEF为直角三角形本题主要考查解直角三角形,关键在于第二问中直角的确定,这类问题是分类讨论的思想,应当掌握.17、(1);(2).【解析】
(1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;
(2)原式提取公因式,再利用完全平方公式分解即可.【详解】(1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;(2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.本题考查的知识点是整式的混合运算,提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算,提公因式法与公式法的综合运用.18、(1)(x-3)(x+1);(a+b)(a-5b);(2)代数式m2+6m+13的最小值是1【解析】
(1)二次三项式是完全平方式,则常数项是一次项系数一半的平方;(2)利用配方法将代数式m2+6m+13转化为完全平方与和的形,然后利用非负数的性质进行解答.【详解】(1)x2-2x-3,=x2-2x+1-1-3,=(x-1)2-1,=(x-1+2)(x-1-2),=(x-3)(x+1);a2-1ab-5b2,=a2-1ab+1b2-1b2-5b2,=(a-2b)2-9b2,=(a-2b-3b)(a-2b+3b),=(a+b)(a-5b);故答案为:(x-3)(x+1);(a+b)(a-5b);(2)m2+6m+13=m2+6m+9+1=(m+3)2+1,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是1.本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.一、填空题(本大题共5个小题,每小题4分,共20分)19、x=1.【解析】
将不等式两边同时除以-2,即可解题【详解】∵﹣2x>-4∴x<2∴正整数解为:x=1故答案为x=1.本题考查解不等式,掌握不等式的基本性质即可解题.20、40.【解析】
根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【详解】解:如图,连接AF,∵DE为△ABC的中位线,∴DE//BC,BC=2DE=10cm.由折叠的性质可得:,∴,∴.故答案是40.本题考查翻折变换(折叠问题),三角形中位线定理.在三角形底已知的情况下要求三角形的面积,只需要求出它的高即可,本题解题关键是连接AF,证明AF为△ABC的高.21、1【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=BD,∵BC=BD,∴CD=BC=BD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=1°.故答案为:1.考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.22、4.【解析】
先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.【详解】解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,∴四边形EFGH是矩形,边接AC,则AC=BD=4,又∵EH是△ABD的中位线,∴EH=BD=2,同理EF=AC=2,∴四边形EFGH的面积为2×2=4.故答案为4.本题考查了正方形的性质,矩形的判定,三角形中位线定理.23、1【解析】
先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.【详解】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为1分,因此a=b=c=d=e=1,即C得1分.故答案是:1.利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.二、解答题(本大题共3个小题,共30分)24、(1)OD,BO;(2)AC;(3)见解析.【解析】
(1)观察图形直接得到结果;(2)由AO+OB=AB,AB+BC=AC即可得到答案;(3)根据平行四边形法则即可求解.【详解】解:(1)与相反的向量有,.(2)∵+=,+=,∴++=.(3)如图,作平行四边形OBEC,连接AE,即为所求.故答案为(1)OD,BO;(2)AC;(3)见解析.本题考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年双减背景下的教学学术心得体会
- 产学研合作对汽车行业创新人才培养的促进作用
- 2025年春季幼儿园小班下学期教学计划范例
- 2024年柳州职业技术学院单招职业适应性测试题库及答案解析
- 驾驶员个人安全目标责任书范文
- 2025年各学校招生计划参考范文
- 2025年化妆品销售工作计划范文
- 2025年教师培训计划培训工作计划
- 2025年大学生社会实践活动计划
- 2025年小学督导工作计划
- 三年级数学寒假作业每日一练30天
- 机动车查验员技能理论考试题库大全-上(单选题部分)
- 监理人员安全生产培训
- 2024-2030年中国电力检修行业运行状况及投资前景趋势分析报告
- 河北省百师联盟2023-2024学年高二上学期期末大联考历史试题(解析版)
- 中央空调系统运行与管理考核试卷
- 核电工程排水隧道专项施工方案
- 2024年市场运营部职责样本(3篇)
- 民办学校招生教师培训
- 炼铁行业的安全生产与环境保护考核试卷
- 抗菌药物的合理应用培训
评论
0/150
提交评论