山西省2024年九年级数学第一学期开学复习检测试题【含答案】_第1页
山西省2024年九年级数学第一学期开学复习检测试题【含答案】_第2页
山西省2024年九年级数学第一学期开学复习检测试题【含答案】_第3页
山西省2024年九年级数学第一学期开学复习检测试题【含答案】_第4页
山西省2024年九年级数学第一学期开学复习检测试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页山西省2024年九年级数学第一学期开学复习检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,一块等腰直角的三角板,在水平桌面上绕点按顺时针方向旋转到的位置,使三点共线,那么旋转角度的大小为()A. B. C. D.2、(4分)已知一次函数的图象经过第一、三、四象限,则下列结论正确的是()A. B.. C. D.3、(4分)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x

-2

0

1

y

3

p

0

A.1 B.-1 C.3 D.-34、(4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为()A.= B.= C.= D.=5、(4分)如果三个数a、b、c的中位数与众数都是5,平均数是4,那么b的值为()A.2 B.4 C.5 D.5或26、(4分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A. B. C. D.7、(4分)直线与直线在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解为()A.x>-1 B.x<-1 C.x<-2 D.无法确定8、(4分)炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,则它们另一个交点为坐标为_____.10、(4分)分式方程有增根,则m=_____________.11、(4分)如图,已知矩形的面积为,依次取矩形各边中点、、、,顺次连结各中点得到第个四边形,再依次取四边形各边中点、、、,顺次连结各中点得到第个四边形,……,按照此方法继续下去,则第个四边形的面积为________.12、(4分)实数a在数轴上的位置如图示,化简:_____.13、(4分)若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).三、解答题(本大题共5个小题,共48分)14、(12分)如图,一次函数y=-12x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2(1)求m的值及l2(2)求得SΔAOC-S(3)一次函数y=kx+1的图象为l3,且l1,l2,l315、(8分)已知a+b=5,ab=6,求多项式a3b+2a2b2+ab3的值.16、(8分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?17、(10分)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当=时,四边形EGFH为矩形.18、(10分)如图,在四边形中,,,,,,点从点出发,以每秒单位的速度向点运动,点从点同时出发,以每秒单位的速度向点运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为秒.(1)当时,若以点,和点,,,中的两个点为顶点的四边形为平行四边形,且线段为平行四边形的一边,求的值.(2)若以点,和点,,,中的两个点为顶点的四边形为菱形,且线段为菱形的一条对角线,请直接写出的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.20、(4分)如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.21、(4分)如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)22、(4分)将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.(2)如图2,若直线l经过点B(1,0),双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.23、(4分)如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.二、解答题(本大题共3个小题,共30分)24、(8分)先化简,后求值:,其中,x从0、﹣1、﹣2三个数值中适当选取.25、(10分)如图,等腰直角三角形AEF的顶点E在等腰直角三角形ABC的边BC上.AB的延长线交EF于D点,其中∠AEF=∠ABC=90°.(1)求证:(2)若E为BC的中点,求的值.26、(12分)某车间加工300个零件,加工完80个以后,改进了操作方法,每天能多加工15个,一共用了6天完成任务.求改进操作方法后每天加工的零件个数.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据三点共线可得,再根据等腰直角三角板的性质得,即可求出旋转角度的大小.【详解】∵三点共线∴∵这是一块等腰直角的三角板∴∴故旋转角度的大小为135°故答案为:D.本题考查了三角板的旋转问题,掌握等腰直角三角板的性质、旋转的性质是解题的关键.2、B【解析】

利用一次函数图象性质,图象经过第一、三、四象限,,即可解答.【详解】一次函数,图象经过第一、三、四象限,则,解得:故选B.本题考查了一次函数的图象特征,熟练掌握函数图象所经过象限与k、b之间的关系是解题关键.3、A【解析】设一次函数的解析式为y=kx+b,将表格中的对应的x,y的值(-2,3),(1,0)代入得:,解得:.∴一次函数的解析式为y=-x+1.当x=0时,得y=1.故选A.4、C【解析】

根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【详解】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:C.此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.5、D【解析】

该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【详解】解:设另一个数为x,则5+5+x=4×3,解得x=1,即b=5或1.故选D.本题主要考查众数、中位数、平均数,用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6、C【解析】

根据正比例函数与一次函数的图象性质作答.【详解】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当1<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<1时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<1,所以两函数交点的横坐标小于1.故选:C.本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.7、B【解析】

如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.8、D【解析】试题分析:由乙队每天安装x台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:.故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:∵同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,∴另一交点的坐标是(-3,1).

故答案是:(-3,1).本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.10、1【解析】分式方程去分母得:x+x﹣1=m,根据分式方程有增根得到x﹣1=0,即x=1,将x=1代入整式方程得:1+1﹣1=m,则m=1,故答案为1.11、【解析】

根据矩形ABCD的面积、四边形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现中点四边形的面积等于原四边形的面积的一半,找到规律即可解题.【详解】解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则四边形A1B1C1D1的面积为矩形ABCD面积的,顺次连接四边形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为四边形A1B1C1D1面积的一半,即为矩形ABCD面积的,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,即为矩形ABCD面积的,故中点四边形的面积等于原四边形的面积的一半,则四边形AnBnCnDn面积为矩形ABCD面积的,又∵矩形ABCD的面积为1,∴四边形AnBnCnDn的面积=1×=,故答案为:.本题考查了中点四边形以及矩形的性质的运用,找到连接矩形、菱形中点所得的中点四边形的面积为原四边形面积的一半是解题的关键.12、1.【解析】

由数轴可知,1<a<2,从而得到a-1>0.a-2<0.再根据绝对值的性质:和二次根式的性质:化简即可.【详解】解:∵1<a<2,∴a-1>0.a-2<0.∴a-1+2-a=1故答案为:1.本题考查了绝对值和二次根式的性质,掌握它们的性质是解题的关键.13、<【解析】

先根据直线y=1018x-1019判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=1018x-1019,k=1018>0,∴y随x的增大而增大,又∵x1<x1+1,∴y1<y1.故答案为:<.本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.三、解答题(本大题共5个小题,共48分)14、(1)m=52;y=32x;(2)252;(3)【解析】

(1)由y=-12x+5求出点C(2)分别求出ΔAOC,ΔBOC的面积即可;(3)l3∥l1,l3∥【详解】解:(1)∵点Cm,154∴把Cm,154代入y=-1设l2的解析式为y=ax,将点C52,∴l2的解析式为(2)y=-12x+5=0时,x=10,所以A(10,0),B(0,5),即OA=10,OB=5,由C52,154可知点C到S(3)由题意可得l3∥l1,当l3∥l1时,k=-12,当l3∥l2时,k=32所以当l1,l2,l3可以围成三角形时k的取值范围为k≠-12本题考查了一次函数,包括待定系数法求解析式及函数图像围成三角形的面积,正确理解题意,做到数形结合是解题的关键.15、1【解析】

对所求的式子先提公因式,然后将a+b=5,ab=6代入即可解答本题.【详解】∵a+b=5,ab=6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=6×52=6×25=1.本题考查因式分解的应用,解答本题的关键是对所求式子变形,找出与已知式子之间的关系.16、(1)图形见解析(2)众数为5,中位数是5;(3)估计这240名学生共植树1272棵.【解析】

(1)先求出D类的人数,然后补全统计图即可;(2)由众数的定义解答,根据中位数的定义,因为是20个人,因此找出第10人和第11人植树的棵树,求出平均数即为中位数;(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.【详解】(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,补全统计图如图所示;(2)由图可知,植树5棵的人数最多,是8人,所以,众数为5,按照植树的棵树从少到多排列,第10人与第11人都是植5棵数,所以,中位数是5;(3)(棵),240×5.3=1272(棵).答:估计这240名学生共植树1272棵.考点:1、条形统计图;2、用样本估计总体;3、中位数;4、众数17、(1)见解析;(2)当时,平行四边形EGFH是矩形,理由见解析.【解析】

(1)可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.(2)证出四边形ABFE是菱形,得出AF⊥BE,即∠EGF=90°,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E.F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)当时,平行四边形EGFH是矩形.理由如下:连接EF,如图所示:由(1)同理可证四边形ABFE是平行四边形,当时,即BC=2AB,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90∘,∴平行四边形EGFH是矩形.全等三角形的判定与性质,平行四边形的判定与性质,矩形的判定.对于问题(1)利用两组对边分别平行的四边形是平行四边形证明四边形EGFH是平行四边形,在这个过程中可证明四边形AECF和四边形BFDE是平行四边形是平行四边形;对于问题(2)再(1)的基础上只需要证明有一个角是直角即可,这里借助菱形的对角线互相垂直平分,只需要证明四边形ABFE是菱形即可.18、(1)当t=或4时,线段为平行四边形的一边;(2)v的值是2或1【解析】

(1)由线段为平行四边形的一边分两种情况,利用平行四边形的性质对边相等建立方程求解即可得到结论;(2)由线段为菱形的一条对角线,用菱形的性质建立方程求解即可求出速度.【详解】(1)由线段为平行四边形的一边,分两种情况:①当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB是平行四边形,此时t=22-3t,解得t=;②当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD是平行四边形,此时16-t=3t,解得t=4;综上,当t=或4时,线段为平行四边形的一边;(2)在Rt△ABP中,,AP=t∴,当PD=BQ=BP时,四边形PBQD是菱形,∴,解得∴当t=6,点Q的速度是每秒2个单位时四边形PBQD是菱形;在Rt△ABQ中,,BQ=22-vt,∴,当AP=AQ=CQ时,四边形AQPC是菱形,∴,解得,∴当t=,点Q的速度是每秒1个单位时四边形AQPC是菱形,综上,v的值是2或1.此题考查图形与动点问题,平行四边形的性质,菱形的性质,勾股定理,正确理解图形的形状及性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、9或.【解析】

分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA交DC于点F,∵菱形ABCD的周长为24,

∴AB=BC=6,

∵∠ABC=60°,

∴三角形ABC是等边三角形,

∴∠BAC=60°,

当EA⊥BA时,△ABE是等腰直角三角形,

∴AE=AB=AC=6,∠EAC=90°+60°=150°,

∴∠FAC=30°,

∵∠ACD=60°,

∴∠AFC=90°,

∴CF=AC=3,

则△ACE的面积为:AE×CF=×6×3=9;

②如图2,过点A作AF⊥EC于点F,

由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,

∵AB=BE=BC=6,

∴∠BEC=∠BCE=15°,

∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,

∴AF=AE,AF=CF=AC=,

∵AB=BE=6,

∴AE=,

∴EF=,

∴EC=EF+FC=

则△ACE的面积为:EC×AF=.

故答案为:9或.本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.20、1【解析】

首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;【详解】解:分别以D和E作为圆心,以略长于EH的长度为半径作弧,交于点F,连接AF并延长,交CD于G,则AG即为∠BAD的角平分线,设AG交BD于H,则AG垂直平分线线段DE(等腰三角形三线合一),∴DH=EH=3,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AGD=∠GAB,∵∠DAG=∠GAB,∴∠DAG=∠DGA,∴DA=DG,∵DE⊥AG,∴AH=GH(等腰三角形三线合一),在Rt△ADH中,AH=,∴AG=2AH=1,故答案为1.本题考查作图-复杂作图、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;21、①③⑤【解析】

如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.【详解】解:如下图,连接OO′,∵△ABC为等边三角形,∴∠ABC=60°,AB=CB;由题意得:∠OBO′=60°,OB=O′B,∴△OBO′为等边三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴选项②错误;在△ABO′与△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,可以看成是△BOC绕点B逆时针旋转60°得到的,∴选项①正确;在△AOO′中,∵32+42=52,∴△AOO′为直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴选项③正确;∵S四边形AOBO′=×42×sin60°+×3×4=4+6,∴选项④错误;如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,同理可得,△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,∴S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32×sin60°=6+.故⑤正确;故答案为:①③⑤.本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.22、F(4,0)【解析】

(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;

(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;【详解】解:(1)如图:当y=0时,±,

解得:x1=2,x2=-2(舍去),

∴点A的坐标为(2,0).

∵点B的坐标为(1,0),

∴AB=1.

∵e=2,

∴,

∴AF=2,

∴OF=OB+AB+AF=4,

∴F点的坐标为(4,0).

故答案为:(4,0).(2)设点P的坐标为(x,),则点H的坐标为(1,).

∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),

∴点Q的坐标为(x+,).

∵点H的坐标为(1,),HQ=HP,

∴(x+-1)2+(-)2=[(x-1)]2,

化简得:15x2-48x+39=0,

解得:x1=,x2=1(舍去),

∴点P的坐标为(,).故答案为:(,).本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;23、y=2x+1【解析】试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论