山东省青岛开发区实验2025届九上数学开学学业水平测试试题【含答案】_第1页
山东省青岛开发区实验2025届九上数学开学学业水平测试试题【含答案】_第2页
山东省青岛开发区实验2025届九上数学开学学业水平测试试题【含答案】_第3页
山东省青岛开发区实验2025届九上数学开学学业水平测试试题【含答案】_第4页
山东省青岛开发区实验2025届九上数学开学学业水平测试试题【含答案】_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页山东省青岛开发区实验2025届九上数学开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在一次数学测试中,某小组的5名同学的成绩(百分制,单位:分)如下:80,98,98,83,96,关于这组数据说法错误的是()A.众数是98 B.平均数是91C.中位数是96 D.方差是622、(4分)下列因式分解错误的是()A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B.x2+2x+1=(x+1)2C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x+y)(x﹣y)3、(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°4、(4分)函数中,自变量x的取值范围是A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠05、(4分)运用分式基本性质,等式中缺少的分子为()A.a B.2a C.3a D.4a6、(4分)到△ABC的三条边距离相等的点是△ABC的().A.三条中线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条角平分线的交点7、(4分)已知(4+)•a=b,若b是整数,则a的值可能是()A. B.4+ C.4﹣ D.2﹣8、(4分)下列各式不能用公式法分解因式的是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,△ABC和△BDE都是等边三角形,A、B、D三点共线.下列结论:①AB=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等边三角形.其中正确的有____________(只填序号).10、(4分)若分式的值为零,则_____.11、(4分)如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.12、(4分)已知,为实数,且满足,则_____.13、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_______________三、解答题(本大题共5个小题,共48分)14、(12分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.15、(8分)解方程(1)(2)(3)16、(8分)某校检测学生跳绳水平,抽样调查了部分学生的“一分钟跳绳”成绩,并绘制了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)抽样的人数是________人,补全频数分布直方图,扇形中________;(2)本次调查数据的中位数落在________组;(3)如果“一分钟跳绳”成绩大于等于120次为优秀,那么该校2250名学生中“1分钟跳绳”成绩为优秀的大约有多少人?17、(10分)在平面直角坐标系中,直线l经过点A(﹣1,﹣4)和B(1,0),求直线l的函数表达式.18、(10分)某河道A,B两个码头之间有客轮和货轮通行一天,客轮从A码头匀速行驶到B码头,同时货轮从B码头出发,运送一批建材匀速行驶到A码头两船距B码头的距离千米与行驶时间分之间的函数关系如图所示请根据图象解决下列问题:分别求客轮和货轮距B码头的距离千米、千米与分之间的函数关系式;求点M的坐标,并写出该点坐标表示的实际意义.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.20、(4分)因式分解:__________.21、(4分)甲、乙两位选手各射击10次,成绩的平均数都是9.2环,方差分别是,,则____选手发挥更稳定.22、(4分)将直线y=7x向下平移2个单位,所得直线的函数表达式是________.23、(4分)若已知a,b为实数,且=b﹣1,则a+b=_____.二、解答题(本大题共3个小题,共30分)24、(8分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:问题解决(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.25、(10分)如图,点E,F为▱ABCD的对角线BD上的两点,连接AE,CF,∠AEB=∠CFD.求证:AE=CF.26、(12分)已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,图象经过点(0,-2)?(3)k为何值时,y随x的增大而减小?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据数据求出众数、平均数、中位数、方差即可判断.【详解】A.98出现2次,故众数是98,正确B.平均数是=91,正确;C.把数据从小到大排序:80,83,96,98,98,故中位数是96,正确故选D.此题主要考查统计调查的应用,解题的关键是熟知众数、平均数、中位数、方差的求解.2、A【解析】

A、原式=(x﹣2)(2x﹣1),错误;B、原式=(x+1)2,正确;C、原式=xy(x﹣y),正确;D、原式=(x+y)(x﹣y),正确,故选A.3、C【解析】

根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠ACD=∠BAC,

由折叠的性质得:∠BAC=∠B′AC,

∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;

故选C.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4、C【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.5、D【解析】

根据分式的基本性质即可求出答案.【详解】解:,故选择:D.本题考查分式的运算,解题的关键是熟练运用分式的基本性质,本题属于基础题型.6、D【解析】

根据角平分线的性质求解即可.【详解】到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点故答案为:D.本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.7、C【解析】

找出括号中式子的有理化因式即可得.【详解】解:(4+)×(4-)=42-()2=16-3=13,是整数,所以a的值可能为4-,故选C本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.8、C【解析】

根据公式法有平方差公式、完全平方公式,可得答案.【详解】A、x2-9,可用平方差公式,故A能用公式法分解因式;B、-a2+6ab-9b2能用完全平方公式,故B能用公式法分解因式;C、-x2-y2不能用平方差公式分解因式,故C正确;D、x2-1可用平方差公式,故D能用公式法分解因式;故选C.本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、②③④⑤【解析】

由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.【详解】∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴在△BGD和△BFE中,,∴△BGD≌△BFE(ASA),∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,在△ABF和△CGB中,,∴△ABF≌△CGB(SAS),∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∴②③④⑤都正确.故答案为②③④⑤.本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.10、-1【解析】

直接利用分式的值为0,则分子为0,分母不为0,进而得出答案.【详解】解:∵分式的值为零,∴解得:.故答案为:﹣1.本题考查分式的值为零的条件,正确把握定义是解题的关键.11、【解析】∵四边形ABCD为矩形,

∴AB=DC=6,BC=AD=8,AD∥BC,∠B=90°.

∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,

∴∠DAC=∠D′AC.

∵AD∥BC,

∴∠DAC=∠ACB.

∴∠D′AC=∠ACB.

∴AE=EC.

设BE=x,则EC=8-x,AE=8-x.

∵在Rt△ABE中,AB2+BE2=AE2,

∴62+x2=(8-x)2,解得x=,即BE的长为.故答案是:.12、4【解析】

直接利用二次根式有意义的条件得出、的值,进而得出答案.【详解】、为实数,且满足,,,则.

故答案为:.此题主要考查了二次根式有意义的条件,正确得出、的值是解题关键.13、m<【解析】当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2.故答案为m<1/2.三、解答题(本大题共5个小题,共48分)14、见解析【解析】试题分析:(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.试题解析:(1)∵AE∥BC,∴∠AEF=∠DBF,∠EAF=∠FDB,∵点F是AD的中点,∴AF=DF,∴△AFE≌△DFB,∴AE=CD,∵AD是△ABC的中线,∴DC=AD,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形;(2)∵BE平分∠AEC,∴∠AEB=∠CEB,∵AE∥BC,∴∠AEB=∠EBC,∴∠CEB=∠EBC,∴EC=BC,∵由(1)可知,AD=EC,BD=DC=AE,∴AD=BC,又∵AF=DF,∴AF=DF=BD=DC=AE,即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.15、(1)(2)(3)【解析】

(1)运用直接开平方法;(2)运用配方法;(3)运用公式法.【详解】解(1)(2)所以(3)因为a=1,b=-4,c=-7所以,所以考核知识点:解一元二次方程.掌握各种方法是关键.16、(1)60,见解析,84;(2)C;(3)1500人【解析】

(1)用A类人数除以它所占的百分比得到调查的总人数;用总人数减去A、B、C、E组的人数即可得到D组人数,可以补全直方图;然后用B类人数除以调查的总人数×360°即可得到m的值;(2)根据总人数确定中位数是第几个数据,再从直方图中找出这个数据落在哪一组;(3)先算出抽样调查中“一分钟跳绳”成绩大于等于120次的人数,除以调查的总人数再乘以2250即可得到答案【详解】解:(1)6÷10%=60,所以抽样人数为60人;60-(6+14+19+5)=16人,所以补全直方图如下:扇形统计图中B所对应的圆心角为14÷60×360°=84°,所以84;故答案为:60,见解析,84(2)∵调查总人数为60∴中位数应该是第30和第31个数据的平均数由图可知第30、31个数据都落在C组,所以中位数落在C组故答案为C(3)由图知:“一分钟跳绳”成绩大于等于120次的调查人数为19+16+5=40人∴人所以该校2250名学生中“1分钟跳绳”成绩为优秀的大约有1500人故答案为1500.本题考查了条形统计图与扇形统计图,样本估计总体以及中位数等,注意计算要认真.17、y=2x-2.【解析】

根据待定系数法,可得一次函数解析式.【详解】解:设直线l的表达式为y=kx+b(k≠0),依题意,得-k+b=-4解得:k=2b=-2所以直线l的表达式为y=2x-2.本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题关键.18、(1),;(2)两船同时出发经24分钟相遇,此时距B码头8千米.【解析】

(1)设y1=k1x+b,把(0,40),(30,0)代入得到方程组即可;设y2=k2x,把(120,40)代入即可解答;

(2)联立y1,y2得到方程组,求出方程组的解,即可求出M点的坐标.【详解】解:设,把,代入得:,解得:,,设,把代入得:,解得:,;联立与得:,解得:,

点M的坐标为,

它的实际意义是:两船同时出发经24分钟相遇,此时距B码头8千米.本题考查了一次函数的应用,解决本题的关键是用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.一、填空题(本大题共5个小题,每小题4分,共20分)19、5【解析】

解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,∴(3+4)=(2+3+4+x),解得:x=5;故答案为520、【解析】

先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式,故答案为:本题考查提公因式,熟练掌握运算法则是解题关键.21、甲【解析】

根据方差越大波动越大越不稳定,作出判断即可.【详解】解:∵S甲2=0.015,S乙2=0.025,

∴S乙2>S甲2,

∴成绩最稳定的是甲.

故答案为:甲.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、y=7x-2【解析】

根据一次函数平移口诀:上加下减,左加右减,计算即可.【详解】将直线y=7x向下平移2个单位,则y=7x-2.本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.23、6【解析】

根据二次根式被开方数为非负数可得关于a的不等式组,继而可求得a、b的值,代入a+b进行计算即可得解.【详解】由题意得:,解得:a=5,所以:b=1,所以a+b=6,故答案为:6.本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b【解析】

(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.【详解】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,连接CP,∵△BPC的边BP和△EPC的边EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论