版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共11页山东省济南市市中学区五校联考2025届数学九上开学复习检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是()A.B.C.D.2、(4分)中国“一带一路”战略沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入为美元,预计2019年人均收入将达到美元,设2017年到2019年该地区居民年人均收入平均增长率为,可列方程为()A. B.C. D.3、(4分)如图,在中,为边上一点,将沿折叠至处,与交于点,若,,则的大小为()A. B. C. D.4、(4分)下列各组数中,能构成直角三角形的是()A.1,1, B.4,5,6 C.6,8,11 D.5,12,155、(4分)如图,在△ABC中,D,E,F分别是AB、CA、BC的中点,若CF=3,CE=4,EF=5,则CD的长为()A.5 B.6 C.8 D.106、(4分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研 B.钱进 C.孙兰 D.李丁7、(4分)下列四个三角形,与左图中的三角形相似的是().A. B. C. D.8、(4分)下列关于一次函数的说法,错误的是()A.图象经过第一、二、四象限B.随的增大而减小C.图象与轴交于点D.当时,二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.10、(4分)如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.11、(4分)如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.12、(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为_____.13、(4分)周末,小李从家里出发骑车到少年宫学习绘画,学完后立即回家,他离家的距离y(km)与时间x(h)之间的函数关系如图所示,有下列结论:①他家离少年宫30km;②他在少年宫一共停留了3h;③他返回家时,离家的距离y(km)与时间x(h)之间的函数表达式是y=-20x+110;④当他离家的距离y=10时,时间x=.其中正确的是________(填序号).三、解答题(本大题共5个小题,共48分)14、(12分)已知一次函数的图象经过点(3,5),(﹣4,﹣2)两点.(1)求这个一次函数的解析式;(2)在如图所示的坐标系中画出这个一次函数的图象.15、(8分)如图,直线分别与轴、轴交于点、点,与直线交于点.(1)若,请直接写出的取值范围;(2)点在直线上,且的面积为3,求点的坐标?16、(8分)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.17、(10分)如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM≌△DCM;(2)四边形ABCD是矩形.18、(10分)如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当a=______时,最简二次根式与是同类二次根式.20、(4分)如图,过正方形的顶点作直线,过作的垂线,垂足分别为.若,,则的长度为.21、(4分)因式分解:______.22、(4分)甲,乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇。着两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示.乙车从A地出发到返回A地需________小时.23、(4分)正方形中,点是对角线上一动点,过作的垂线交射线于,连接,,则的值为________.二、解答题(本大题共3个小题,共30分)24、(8分)季末打折促销,甲乙两商场促销方式不同,两商场实际付费y(元)与标价x(元)之间的函数关系如图所示折线O-A-C(虚线)表示甲商场,折线O-B-C表示乙商场(1)分别求射线AC,BC的解析式.(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是______.(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是______.25、(10分)已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)求出该反比例函数解析式;(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.26、(12分)嘉琪准备完成题目“计算:”时,发现“”处的数字印刷得不清楚.他把“”处的数字猜成3,请你计算.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC与BD相交于O,
在▱ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、AF=EF无法证明得到OE=OF,故本选项正确.
B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;
C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;
D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;
故选:A.本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.2、B【解析】
用增长后的量=增长前的量×(1+增长率),如果设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意可用x表示1019年年人均收入,然后根据已知可以得出关系式.【详解】设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意得1019年年人均收入为:300(x+1)1,则
1100=300(x+1)1.
故选:B.考查了根据实际问题列二次函数关系式,对于平均增长率问题,一般形式为a(1+x)1=b,a为起始时间的有关数量,b为终止时间的有关数量.3、B【解析】
由平行四边形的性质可得∠B=∠D=52°,由三角形的内角和定理可求∠DEA的度数,由折叠的性质可求∠AED'=∠DEA=108°.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D=52°,且∠DAE=20°,∴∠DEA=180°﹣∠D-∠DAE=108°.∵将△ADE沿AE折叠至△AD'E处,∴∠AED'=∠DEA=108°.故选B.本题考查了翻折变换,平行四边形的性质,三角形内角和定理,熟练运用这些性质是本题的关键.4、A【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两短边的平方和是否等于最长边的平方即可.【详解】解:A.12+12=()2,能构成直角三角形,故符合题意;B.52+42≠62,不能构成直角三角形,故不符合题意;C.62+82≠112,不能构成直角三角形,故不符合题意;D.122+52≠152,不能构成直角三角形,故不符合题意.故选A.本题考查了勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.5、A【解析】
首先由勾股定理逆定理判断△ECF是直角三角形,由三角形中位线定理求出AB的长,最后根据直角三角形斜边上的中线等于斜边的一半求出CD的长即可.【详解】∵CF=3,CE=4,EF=5,∴CF2+CE2=EF2,∴△ECF是直角三角形,即△ABC也是直角三角形,∵E,F分别是CA、BC的中点,∴EF是△ABC的中位线,∴AB=2EF=10,∵D为AB的中点,∴CD=AB=故选:A.此题主要考查了直角三角形的判定,三角形的中位线定理以及直角三角形斜边上的中线等于斜边的一半等知识,熟练掌握上述知识是解答此题的关键.6、B【解析】
根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:.本题考查了平均数和方差,熟悉它们的意义是解题的关键.7、B【解析】
本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.
A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;
B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.
故选:B.此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.8、D【解析】
由,可知图象经过第一、二、四象限;由,可得随的增大而减小;图象与轴的交点为;当时,;【详解】∵,∴图象经过第一、二、四象限,A正确;∵,∴随的增大而减小,B正确;令时,,∴图象与轴的交点为,∴C正确;令时,,当时,;D不正确;故选:D.本题考查一次函数的图象及性质;熟练掌握一次函数解析式中,与对函数图象的影响是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
由矩形的性质可证明S△DFP=S△PBE,即可求解.【详解】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×5=5,∴S阴=5+5=10,故答案为:10.本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.10、1【解析】试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB===10,∴BD=2OB=1.故答案为:1.11、【解析】
根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.【详解】解:∵将△CDP沿DP折叠,点C落在点E处,∴DC=DE=5,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE-EF=5-x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,∴AF=AB-BF=2+x.在Rt△DAF中,AF2+AD2=DF2,∴(2+x)2+32=(5-x)2,∴x=∴AF=2+=故答案为:本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.12、1【解析】
因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为1.【详解】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=1故答案为1此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.13、①②③【解析】分析:根据图象能够理解离家的距离随时间的变化情况进行判断即可.详解:①他家离少年宫=30km,正确;②他在少年宫一共停留了4﹣1=3个小时,正确;③他返回家时,y(km)与时间x(h)之间的函数表达式是y=﹣20x+110,正确;④当他离家的距离y=10km时,时间x=5(h)或x==(h),错误.故答案为:①②③.点睛:本题考查了一次函数的应用,根据图象能够理解离家的距离随时间的变化情况,是解决本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=x+1.(1)详见解析【解析】
(1)设一次函数解析式为:y=kx+b,将两点代入可求出k和b的值,即得出了函数解析式;(1)根据一次函数的图象过(﹣1,3),(4,﹣1)两点即可画出函数的图象.【详解】解:(1)设一次函数解析式为:y=kx+b,将两点代入得:,解得:,所以一次函数解析式为:y=x+1.(1)函数y=x+1的图象如下图所示:此题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,以及一次函数的图象,正确求出函数的解析式是解题的关键.15、(1)x>2;(2)(0,3)或(4,1).【解析】
(1)依据直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),即可得到当y1<y2时,x>2;(2)分两种情况讨论,依据△OPC的面积为3,即可得到点P的坐标.【详解】解:(1)∵直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),∴当y1<y2时,x>2;(2)将(2,2)代入y1=x+b,得b=3,∴y1=x+3,∴A(6,0),B(0,3),设P(x,x+3),则当x<2时,由×3×2×3×x=3,解得x=0,∴P(0,3);当x>2时,由×6×2﹣×6×(x+3)=3,解得x=4,∴x+3=1,∴P(4,1),综上所述,点P的坐标为(0,3)或(4,1).故答案为(1)x>2;(2)(0,3)或(4,1).本题主要考查了一次函数图象上点的坐标特征以及一次函数的性质,设P(x,x+3),利用三角形的面积的和差关系列方程是解题的关键.16、见解析【解析】
解:结论:四边形ABCD是平行四边形证明:∵DF∥BE∴∠AFD=∠CEB又∵AF=CEDF=BE,∴△AFD≌△CEB(SAS)∴AD=CB∠DAF=∠BCE∴AD∥CB∴四边形ABCD是平行四边形17、(1)详见解析;(2)详见解析;【解析】
(1)由四边形ABCD是平行四边形,得出AB=CD,又由M为AD的中点,得出AM=MD,又AB=CD,AM=MD,BM=CM,故△ABM≌△DCM(SSS);(2)根据(1)中△ABM≌△DCM,得出∠BAD=∠CDA,又四边形ABCD是平行四边形,∠BAD+∠CDA=180°,得出∠BAD=∠CDA=90°,故可判定四边形ABCD是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AB=CD∵M为AD的中点∴AM=MD∵AB=CD,AM=MD,BM=CM∴△ABM≌△DCM(SSS)(2)∵△ABM≌△DCM∴∠BAD=∠CDA又∵四边形ABCD是平行四边形∵∠BAD+∠CDA=180°∴∠BAD=∠CDA=90°∴四边形ABCD是矩形.此题主要考查全等三角形和矩形的判定,熟练掌握其判定条件,即可解题.18、(1)FE=FD(2)答案见解析【解析】
(1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;(2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.【详解】(1)FE与FD之间的数量关系为:FE=FD.理由:如图,在AC上截取AG=AE,连结FG,∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF与△AGF中,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,∴2∠2+2∠3+∠B=180°,∴∠2+∠3=60°,又∵∠AFE为△AFC的外角,∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,∴∠CFG=180°-60°-60°=60°,∴∠GFC=∠DFC,在△CFG与△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD;(2)结论FE=FD仍然成立.如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠2+∠3=60°,F是△ABC的内心,∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH,又∵∠HDF=∠B+∠1=60°+∠1,∴∠GEF=∠HDF,在△EGF与△DHF中,,∴△EGF≌△DHF(AAS),∴FE=FD.本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形外角性质,角平分线的性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【详解】解:∵最简二次根式与是同类二次根式,∴a﹣2=10﹣2a,解得:a=1故答案为:1.本题考查同类二次根式.20、【解析】
先利用AAS判定△ABE≌△BCF,从而得出AE=BF,BE=CF,最后得出AB的长.【详解】∵四边形ABCD是正方形,∴∠CBF+∠FBA=90°,∠CBF+∠BCF=90°,∴∠BCF=∠ABE,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS)∴AE=BF,BE=CF,∴AB=.故答案为21、a(a+3)(a-3)【解析】
先提取公因式a,再用平方差公式分解即可.【详解】原式=a(a2-9)=a(a+3)(a-3).故答案为a(a+3)(a-3).本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.22、【解析】
根据题意和函数图象中的数据可以列出相应的方程组,从而可以求得甲、乙两车的速度和乙到达B地时的时间,再根据函数图象即可求得乙车从A地出发到返回A地需的时间.【详解】解:如图,设甲车的速度为a千米/小时,乙的速度为b千米/小时,甲乙第一相遇之后在c小时,相距200千米,则,解得:,∴乙车从A地出发到返回A地需要:(小时);故答案为:本题考查函数图象,解三元一次方程组,解答本题的明确题意,利用数形结合的思想解答.23、【解析】
如图,连接PC.首先证明PA=PC,利用相似三角形的性质即可解决问题.【详解】解:如图,连接PC.
∵四边形ABCD是正方形,
∴点A,点C关于BD对称,∠CBD=∠CDB=45°,
∴PA=PC,
∵PE⊥BD,
∴∠DPE=∠DCB=90°,
∴∠DEP=∠DBC=45°,
∴△DPE∽△DCB,
∴,
∴,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴,
∴BE:PA=,故答案为.本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、解答题(本大题共3个小题,共30分)24、(1)射线AC解析式y=0.9x+5,射线BC解析式y=0.875x+12.5;(2)x>300;(3)50<x<300.【解析】
(1)运用待定系数法求出射线AC的解析式,得出点C的横坐标,再运用待定系数法求射线BC的解析式即可;(2)根据图象解答即可;(3)根据图象解答即可.【详解】(1)解:(1)设射线AC的解析式为y=k1x+b1,根据题意得,50k1∴射线AC的解析式为y解方程9得x=300,即点C的坐标为(300,275),设射线BC的解析式为y=k2x+b2,根据题意得,100k2∴射线BC的解析式为:y=(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是x>300.(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论