【题型梳理练】数轴中的动态问题(原卷版)_第1页
【题型梳理练】数轴中的动态问题(原卷版)_第2页
【题型梳理练】数轴中的动态问题(原卷版)_第3页
【题型梳理练】数轴中的动态问题(原卷版)_第4页
【题型梳理练】数轴中的动态问题(原卷版)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2/2【题型梳理练】数轴中的动态问题TOC\o"1-3"\h\u【题型1数轴动点中的绝对值的最小值问题】 1【题型2数轴动点中的相遇问题】 3【题型3数轴动点中的中点问题】 4【题型4数轴动点中的相距问题】 5【题型5数轴动点中的和差倍分问题】 7【题型6数轴动点中的定值问题】 8【题型7数轴动点中的折返问题】 10【题型8数轴动点中的规律问题】 12【题型9数轴动点中的新定义问题】 13知识点:数轴中的动态问题主要解题步骤

1)画图——在数轴上表示出点的运动情况:运动方向和速度;

2)写点——写出所有点表示的数:一般用含有t的代数式表示,向右运动用“+”表示,向左运动用“-”表示;

3)表示距离——右-左,若无法判定两点的左右需加绝对值;4)列式求解——根据条件列方程或代数式,求值。

注意:要注意动点是否会来回往返运动。【题型1数轴动点中的绝对值的最小值问题】【例1】(23-24七年级·江苏扬州·期末)阅读下面材料:若已知点A表示数a,点B表示数b,则A、B两点之间的距离表示为AB,则AB=a-b.回答下列问题:(1)①点A表示数x,点B表示数1,则A、B两点之间的距离表示为______;②点A表示数x,点B表示数1,如果AB=6,那么x的值为______;(2)①如果a+3+b-2=0,那么a=______,②当代数式x+1+x-2取最小值时,相应的整数x的个数为(3)在数轴上,点D表示的数是最大的负整数、O是原点、E在O的右侧且到O的距离是9,动点P沿数轴从点D开始运动,到达E点后立刻返回,再回到D点时停止运动.在此过程中,点P的运动速度始终保持每秒2个单位长度,设点P的运动时间为t秒.在整个运动过程中,请直接用含t的代数式表示OP.【变式1-1】(23-24七年级·湖南长沙·期末)如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足以下关系式:a+3+c-92(1)a=______;c=______;(2)若将数轴折叠,使得A点与B点重合,则点C与数______表示的点重合;(3)若点P为数轴上一动点,其对应的数为x,当代数式x-a+x-b+x-c取得最小值时,此时x【变式1-2】(23-24七年级·广东深圳·期末)如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+2|+(c-8)2=0(1)a=_____________,c=_________________;(2)若将数轴折叠,使得A点与B点重合,则点C与数表示的点重合.(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式|x-a|+|x-b|+|x-c|取得最小值时,此时x=____________,最小值为__________________.(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示)【变式1-3】(23-24七年级·江苏无锡·期中)已知:b是最小的正整数,且a、b满足c-52(1)请直接写出a,b,c的值:a=________;b=________;c=________;(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:x+1-

(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【题型2数轴动点中的相遇问题】【例2】(23-24七年级·河南郑州·阶段练习)如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为12.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为6个单位长度?【变式2-1】(23-24七年级·甘肃兰州·期末)如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)数轴上点B表示的数是_______,点P表示的数是_______(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:当点P运动多少秒时,点P与点Q相遇?【变式2-2】(23-24七年级·福建三明·期中)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC=8.

(1)直接写出数轴上点C表示的数;(2)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为tt>0秒,动点R从点C出发,以每秒2个单位长度沿数轴向左匀速运动,求当t为何值时P,R(3)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为tt>0秒,动点R从点C出发,以每秒2个单位长度沿数轴向左匀速运动,动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若P,Q    ,R三点同时出发,当点P遇上点R后立即返回向点【变式2-3】(23-24七年级·河北石家庄·阶段练习)如图,已知数轴上A,B,C三个点表示的数分别是a,b,c,且c-10=0,若点A沿数轴向右移动12个单位长度后到达点B,且点A,B(1)a的值为______,b-c的值为______;(2)动点P,Q分别同时从点A,C出发,点P以每秒1个单位长度的速度向终点C移动,点Q以每秒m个单位长度的速度向终点A移动,点P表示的数为x.①若点P,Q在点B处相遇,求m的值;②若点Q的运动速度是点P的2倍,当点P,Q之间的距离为2时,求此时x的值.【题型3数轴动点中的中点问题】【例3】(23-24七年级·全国·假期作业)如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a,c满足a+2+(1)a=______,b=______,c=______.(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,点Q从点C出发,沿数轴向左匀速运动,两点同时出发,当点Q运动到点A时,点P,Q停止运动.当PB=2PO时,点Q运动到的位置恰好是线段OA的中点,求点Q的运动速度.(注:点O为数轴原点)【变式3-1】(23-24七年级·湖北武汉·期中)如图,在数轴上有A、B、C三点,分别表示有理数a,b,c,且a,b,c满足式子a+30+b+10+c-14=0;如图:动点P从点A出发,以2个单位/秒的速度一直向右运动,点P运动5秒后,长度为6个单位的线段MN(M为线段左端点且与点B重合,N为线段右端点)从B点出发以3个单位/秒的速度向右运动,当点N到达点C后,线段MN立即以同样的速度返回向左运动,当点M(1)求a,b,c的值;(2)当t=______秒时,点P与点C重合,并求出此时线段MN上点N所表示的数;(3)记线段MN的中点为Q,在运动过程中,当点P与点Q的距离为1个单位时,求t的值.【变式3-2】(23-24七年级·湖北武汉·阶段练习)已知A,B,C三点在数轴上所对应的数分别为a,b,18,且a、b满足a+102+b-10=0.动点M从点A出发,以2个单位长度/秒的速度向右运动,同时,动点N从点C出发,以1个单位长度/秒的速度向左运动,线段OB为“变速区”,规则为:从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点M到达点C时,两点都停止运动.

(1)a=,b=,AC=;(2)M,N两点相遇时,求相遇点在数轴上所对应的数.(3)点D为线段OB中点,当t为多少秒时,MD=ND?【变式3-3】(23-24七年级·广东广州·期中)如图:在数轴上A点表示数-3,B点表示数1,C点表示数9.

(1)若将数轴折叠,使得A点与C点重合,则点B与______表示的点重合;(2)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动.①若t秒钟过后,A,B,②当点C在B点右侧时,是否存在常数m,使mBC-2AB的值为定值,若存在,求m的值,若不存在,请说明理由.【题型4数轴动点中的相距问题】【例4】(2024七年级·全国·专题练习)如图1,已知线段AB=24,点C为线段AB上的一点,点D、E分别是AC和BC的中点.

(1)若AC=8,则DE的长为______;(2)若BC=a,求DE的长;(3)动点P,Q分别从A,B两点同时出发,相向而行,点P以每秒3个单位长度沿线段AB向右匀速运动,Q点以P点速度的两倍,沿线段AB向左匀速运动,设运动时间为t秒,问当t为多少秒时P,Q之间的距离为6?【变式4-1】(23-24七年级·河南周口·阶段练习)在数轴上点A表示a,点B表示b,且a、b满足a+5(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后,点P到达B点?(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,运动几秒后,P、Q两点间的距离为4个单位长度?【变式4-2】(23-24七年级·吉林长春·期中)在数轴上,O表示原点,A、B两点分别表示﹣8和2.(1)求出线段AB的长度;(2)动点P从A出发沿数轴向右运动,速度为每秒5个单位长度;同时点Q从B出发,沿数轴向右运动,速度为每秒3个单位长度,当P、Q重合时,两点同时停止运动.设两点运动时间为t秒,用含有t的式子表示线段PQ的长;(3)在(2)的条件下,t为何值时,点P、点Q到原点O的距离相等.【变式4-3】(23-24七年级·福建三明·期中)已知数轴上有A、B、C三个点,分别表示有理数-24、-10、10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C的距离,试回答以下问题.

(1)当点P运动10秒时,PA=______,PB=______,PC=______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.【题型5数轴动点中的和差倍分问题】【例5】(23-24七年级·江西南昌·期末)已知数轴上的两点A,B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b满足a+8+

(1)请直接写出a和b的值,a=_______,b=_______;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动;点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.【变式5-1】(23-24七年级·广东佛山·阶段练习)如图,数轴上A、B、C三点表示的数分别为a、b、c,且a、b满足a+8+

(1)则a=___________,b=___________,点A和点B之间的距离是___________;(2)动点P从A点出发,以每秒10个单位的速度沿数轴向右运动,到达B点停留片刻后,以每秒6个单位的速度沿数轴返回到A点,共用了6秒;在上述过程中,点P从点C到点B,停留片刻后,再从点B到点C,共用了2秒.①求C点表示的数c;②设运动时间为t秒,求t为何值时,点P到A、B、C三点的距离之和为23个单位?【变式5-2】(23-24七年级·湖北武汉·期末)如图1,A、B两点在数轴上对应的数分别为-16和6.(1)直接写出A、B两点之间的距离___;(2)若在数轴上存在一点P,使得AP=13PB(3)如图2,现有动点P、Q,若点P从点A出发,以每秒4个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【变式5-3】(23-24七年级·黑龙江哈尔滨·阶段练习)如图,数轴上点A、B对应的数分别是a、b,并且a+12

(1)求A、B两点之间距离.(2)若两动点P、Q同时从原点出发,点P以1个单位长度/秒的速度沿数轴向左运动,点Q以2个单位长度/秒的速度向右运动,问运动多少秒时点P到点A的距离是点Q到点B距离的2倍?(3)点C是数轴上A、B之间一点,P、Q两点同时从点C出发,沿数轴分别向左、右运动,运动时间为a秒时,P、Q两点恰好分别到达点A、B,又运动a秒时,P、Q两点分别到达点E、F,接下来调转方向保持原来速度不变相向而行,同时点R从点E出发沿数轴向右运动,当点R运动3秒时,点R与点Q在M点相遇,此时点P和点M的距离为5个单位长度,点M和点C的距离为2个单位长度,求点R的速度.【题型6数轴动点中的定值问题】【例6】(23-24七年级·广东汕头·期中)如图,在数轴上A点表示数-3,B点表示数b,C点表示数c,且b.c满足b+1(1)b=,c=.(2)若使C.B两点的距离是A.B两点的距离的2倍,则需将点C向左移动个单位长度.(3)点A.B.C开始在数轴上运动,若点A以每秒m个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒;①点A.B.C表示的数分别是..(用含m.t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当m为何值时,2d1-d2的值不会随着时间t的变化而改变,并求出此时2d1-d2的值.【变式6-1】(23-24七年级·安徽芜湖·期中)唐代文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无”,当代印度诗人泰戈尔也写道:“世界上最遥远的距离,不是瞬间便无处寻觅;而是尚未相遇,便注定无法相聚”.距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点P,Q在数轴上分别表示有理数p,q,P,Q两点之间的距离表示为PQ=p-q.例如,在数轴上,有理数3与1对应的两点之间的距离为3-1=2;有理数5与-2对应的两点之间的距离为5--2已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足a-12+b+3(1)分别求a,b,c的值;(2)若点D在数轴上对应的数为x,当A、D间距离是B、C间距离的4倍时,请求出x的值;(3)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒,是否存在一个常数k,使得3AC-kAB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.【变式6-2】(23-24七年级·江苏无锡·期中)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),如图,以两车之间的某点O为原点,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c,a+8与(c-16)2(1)求此时刻快车头A与慢车头C之间相距单位长度.(2)从此时刻开始,若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶秒两列火车的车头A、C相距8个单位长度.(3)在(2)中快车、慢车速度不变的情况下,此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).则这段时间t是秒,定值是单位长度.【变式6-3】(23-24七年级·江苏南通·阶段练习)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=3(单位长度),慢车长CD=5(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速行驶,同时慢车CD以2个单位长度/秒的速度向左匀速行驶,a+8+

(1)a=,b=.(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A,C相距(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客M,他发现行驶中有一段时间t秒钟,他的位置M到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即【题型7数轴动点中的折返问题】【例7】(23-24七年级·湖北荆州·期末)如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.【变式7-1】(23-24七年级·重庆九龙坡·期末)已知数轴上的点A,B,C,D所表示的数分别是a,b,c,d,且a+142(1)求a,b,c,d的值;(2)点A,C沿数轴同时出发相向匀速运动,103秒后两点相遇,点A的速度为每秒4个单位长度,求点C(3)A,C两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D点以每秒1个单位长度的速度向数轴正方向开始运动,在t秒时有BD=2AC,求t的值;(4)A,C两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A运动到点C起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C起始位置方向运动;当点C运动到点A起始位置时马上停止运动.当点C停止运动时,点A也停止运动.在此运动过程中,A,C两点相遇,求点A,C相遇时在数轴上对应的数(请直接写出答案).【变式7-2】(23-24七年级·重庆沙坪坝·期中)数轴上给定两点A、B,点A表示的数为-1,点B表示的数为3,若数轴上有两点M、N,线段MN的中点在线段AB上(线段MN的中点可以与A或B点重合),则称M点与N点关于线段AB对称,请回答下列问题:(1)数轴上,点O为原点,点C、D、E表示的数分别为-3、6、7,则点_____与点O关于线段AB对称;(2)数轴上,点F表示的数为x,G为线段AB上一点,若点F与点G关于线段AB对称,则x的最小值为______,最大值为______;(3)动点P从-9开始以每秒4个单位长度,向数轴正方向移动时,同时,线段AB以每秒1个单位长度,向数轴正方向移动,动点Q从5开始以每秒1个单位长度,向数轴负方向移动;当P、Q相遇时,分别以原速立即返回起点,回到起点后运动结束,设移动的时间为t,则t满足______时,P与Q始终关于线段AB对称.【变式7-3】(23-24七年级·陕西西安·阶段练习)已知数轴上的点A,B,C,D所表示的数分别是a,-12,c,8,且a+14(1)则a=______,c=______;若点A,C沿数轴同时出发相向匀速运动,103秒后两点相遇,点A的速度为每秒4个单位长度,点C的运动速度为每秒______个(2)A,C两点以(1)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D点以每秒1个单位长度的速度向数轴正方向开始运动,在t秒时有BD=2AC,求t的值;(3)A,C两点以(1)中的速度从起始位置同时出发相向匀速运动,当点A运动到点C起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C起始位置方向运动;当点C运动到点A起始位置时马上停止运动,当点C停止运动时,点A也停止运动,在此运动过程中,A,C两点相遇,求点A,C相遇时在数轴上对应的数(请直接写出答案).【题型8数轴动点中的规律问题】【例8】(23-24七年级·陕西西安·阶段练习)如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【变式8-1】(23-24七年级·全国·课后作业)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51A.﹣74 B.﹣77 C.﹣80 D.﹣83【变式8-2】(23-24七年级·辽宁沈阳·期末)一组数0,2,4,8,12,18,…中的奇数项和偶数项分别用代数式n2-12,n22表示,如第1个数为12-12=0,第2个数为222=2,第3个数为32-12=4,…,则第8个数的值是,数轴上现有一点P从原点出发,依次以此组数中的数为距离向左右来回跳跃.第1秒时,点P在原点,记为P1;第2秒点P1向左跳2个单位,记为P2,此时点P2表示的数为【变式8-3】(23-24七年级·北京·期中)如图,已知A地在数轴上表示的数为-16,AB两地相距50个单位长度.小明从A地出发去B地,以每分钟2个单位长度的速度行进,第一次他向左1单位长度,第二次向右2单位长度,第三次再向左3单位长度,第四次又向右4单位长度…,按此规律行进.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第8次行进后小明到达点P,此时点P与点B相距几个单位长度?8次运动完成后一共经过了几分钟?(3)若经过n次(n为正整数)行进后,小明到达点Q,请你直接写出:点Q在数轴上表示的数应如何表示?【题型9数轴动点中的新定义问题】【例9】(23-24七年级·浙江台州·期中)阅读以下材料:我们给出如下定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“雅中点”.解答下列问题:(1)若点A表示的数为-5,点B表示的数为1,点M为点A与点B的“雅中点”,则点M表示的数为;(2)若A、B两点的“雅中点M”表示的数为2,A、B两点的距离为9(A在B的左侧),则点A表示的数为,点B表示的数为;(3)点A表示的数为-6,点O为数轴原点,点C,D表示的数分别是-4,-2,且B为线段上一点(点B可与C、D两点重合).①设点M表示的数为m,若点M可以为点A与点B的“雅中点”,则m可取得整数有;②若点C和点D向数轴正半轴方向移动相同距离n,使得点O可以为点A与点B的“雅中点”,则n的所有整数值为.【变式9-1】(23-24七年级·福建福州·期中)在数轴上有A,B两点,点B表示的数为b.对点A给出如下定义:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论