




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省衡阳县江山学校高二上数学期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题p:“是方程表示椭圆”的充要条件;命题q:“是a,b,c成等比数列”的必要不充分条件,则下列命题为真命题的是()A. B.C. D.2.已知等差数列,,,则数列的前项和为()A. B.C. D.3.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.34.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A. B.C. D.5.已知点P是圆上一点,则点P到直线的距离的最大值为()A.2 B.C. D.6.已知,,,则最小值是()A.10 B.9C.8 D.77.已知梯形ABCD中,,,且对角线交于点E,过点E作与AB所在直线的平行线l.若AB和CD所在直线的方程分别是与,则直线l与CD所在直线的距离为()A.1 B.2C.3 D.48.已知等比数列各项均为正数,且,,成等差数列,则()A. B.C. D.9.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.910.下列说法中正确的是A.命题“若,则”的逆命题为真命题B.若为假命题,则均为假命题C.若为假命题,则为真命题D.命题“若两个平面向量满足,则不共线”的否命题是真命题.11.若,则()A.0 B.1C. D.212.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲乙参加摸球游戏,袋子中装有3个黑球和1个白球,球的大小、形状、质量等均一样,若从袋中有放回地取1个球,再取1个球,若取出的两个球同色,则甲胜,若取出的两个球不同色则乙胜,求乙获胜的概率为_____14.已知双曲线的左、右焦点分别为,,点是圆上一个动点,且线段的中点在的一条渐近线上,若,则的离心率的取值范围是________15.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________16.抛物线的焦点坐标为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C的圆心为,一条直径的两个端点分别在x轴和y轴上(1)求圆C的方程;(2)直线l:与圆C相交于M,N两点,P(异于点M,N)为圆C上一点,求△PMN面积的最大值18.(12分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分19.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.20.(12分)给出以下三个条件:①;②,,成等比数列;③.请从这三个条件中任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分已知公差不为0的等差数列的前n项和为,,______(1)求数列的通项公式;(2)若,令,求数列的前n项和21.(12分)如图,四棱锥中,,,,平面,点F在线段上运动.(1)若平面,请确定点F的位置并说明理由;(2)若点F满足,求平面与平面的夹角的余弦值.22.(10分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先判断命题p,q的真假,从而判断的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】当时,表示圆,故命题p:“是方程表示椭圆”的充要条件是假命题,命题q:“是a,b,c成等比数列”的必要不充分条件为真命题,则是真命题,是假命题,故是假命题,是假命题,是真命题,是假命题,故选:C2、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.3、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.4、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.5、C【解析】求出圆心到直线的距离,由这个距离加上半径即得【详解】由圆,可得圆心坐标,半径,则圆心C到直线的距离为,所以点P到直线l的距离的最大值为.故选:C6、B【解析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值【详解】∵,,,∴=,当且仅当,即时等号成立故选:B7、B【解析】先求得直线AB和CD之间的距离,再求直线l与CD所在直线的距离即可解决.【详解】梯形ABCD中,,,且对角线交于点E,则有△与△相似,相似比为,则,点E到CD所在直线的距离为AB和CD所在直线距离的又AB和CD所在直线的距离为,则直线l与CD所在直线的距离为2故选:B8、A【解析】结合等差数列的性质求得公比,然后由等比数列的性质得结论【详解】设的公比为,因为,,成等差数列,所以,即,,或(舍去,因为数列各项为正)所以故选:A9、D【解析】结合等差数列的通项公式求得.【详解】设公差,.故选:D10、D【解析】A中,利用四种命题的的真假判断即可;B、C中,命题“”为假命题时,、至少有一个为假命题;D中,写出该命题的否命题,再判断它的真假性【详解】对于A,命题“若,则”的逆命题是:若,则;因为也成立.所以A不正确;对于B,命题“”为假命题时,、至少有一个为假命题,所以B错误;C错误;对于D,“平面向量满足”,则不共线的否命题是,若“平面向量满足”,则共线;由知:,一定有,,所以共线,D正确.故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题11、D【解析】由复数的乘方运算求,再求模即可.【详解】由题设,,故2.故选:D12、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##0.375【解析】先算出有放回地取两次的取法数,再算出取出两球不同色的取法数,根据古典概型的概率公式计算即可求得答案.【详解】有放回地取两球,共有种取法,两次取球不同色的取法有种,故乙获胜的概率为,故答案为:14、【解析】设,,因为点是线段中点,所以有,代入坐标求出点的轨迹为圆,因为点在渐近线上,所以圆与渐近线有公共点,利用点到直线的距离求出临界状态下渐近线的斜率,数形结合求出有公共点时渐近线斜率的范围,从而求出离心率的范围.【详解】解:设,,因为点是线段的中点,所以有,即有,因为点在圆上,所以满足:,代入可得:,即,所以点的轨迹是以为圆心,以1为半径的圆,如图所示:因为点在渐近线上,所以圆与渐近线有公共点,当两条渐近线与圆恰好相切时为临界点,则:圆心到渐近线的距离为,因为,所以,即,且,所以,此时,,当时,渐近线与圆有公共点,.故答案为:.15、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:16、【解析】化成标准形式,结合焦点定义即可求解.【详解】由,得,故抛物线的焦点坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设直径两端点分别为,,由中点公式求参数a、b,进而求半径,即可得圆C的方程;(2)利用弦心距、半径、弦长的几何关系求,再由圆心到直线l的距离求P到直线l的距离的最大值,即可得△PMN面积的最大值【小问1详解】设直径两端点分别为,,则,,所以,,则圆C半径,所以C的方程为【小问2详解】圆心C到直线l的距离,则,点P到直线l的距离的最大值为,所以,△PMN面积的最大值为18、(1)条件选择见解析,,(2)【解析】(1)设数列的首项为,公差为d,选①由求解;选②由求解;选③由求解;则,由,利用数列通项与前n项和公式求解;(2)易知,再利用错位相减法求解.【小问1详解】解:设数列的首项为,公差为d,选①得,则,选②得,则,选③得,则,所以数列的通项公式为因为,所以当时,,则当时,,则,所以是以首项为2,公比为2的等比数列,所以【小问2详解】因为,所以数列的前n项和①②①-②得∴,则19、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.20、(1)(2)【解析】(1)若选①,则根据等差数列的前n项和公式,结合,求得公差,可得答案;若选②,则根据,,成等比数列,列出方程,结合,求得公差,可得答案;若选③,则根据,列出方程,结合,求得公差,可得答案;(2)由(1)可得的表达式,利用错位相减法,求得答案.【小问1详解】设数列的公差为d选择①,由题意得,又,则,所以;选择②,由,,成等比数列,得,即,解得,或(舍去),所以;选择③,由,得,解得,所以【小问2详解】由题意知,∴①②①-②得∴,即.21、(1)F为BD的中点,证明见解析;(2).【解析】(1)由为的中点,取的中点,连接易证四边形为平行四边形,得到,再利用线面平行的判定定理证明;(2)根据题意可得平面ABC与平面AFC的夹角为二面角,取的中点H为坐标原点,建立空间直角坐标系,分别求得平面的一个法向量,平面的一个法向量,设二面角为,由求解.【小问1详解】为的中点.如图:取的中点,连接∵,分别为,的中点,∴且∵且∴平行且等于∴四边形为平行四边形,则∵平面ABC,平面ABC∴平面ABC【小问2详解】由题意知,平面ABC与平面AFC的夹角为二面角,取的中点H为坐标原点,建立如图所示的空间直角坐标系.因为三角形为等腰三角形,易求,则,,所以,,设平面的一个法向量为,则,即,解得设平面的一个法向量为,则,即,解得设二面角为,则,因为二面角为锐角,所以余弦值为.22、(1)证明见解析(2)【解析】(1)根据条件先证明,再根据线面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运动健身器材租赁与分期付款服务企业制定与实施新质生产力战略研究报告
- 足球超级联赛运营企业制定与实施新质生产力战略研究报告
- 2025年中国强劲钙软胶囊市场调查研究报告
- 2025-2030数码相框行业风险投资发展分析及投资融资策略研究报告
- 2025-2030建筑水泥企业创业板IPO上市工作咨询指导报告
- 2025-2030学步车市场发展分析及行业投资战略研究报告
- 2025-2030增稠剂产业规划专项研究报告
- 2025-2030城市商业银行产业发展分析及发展趋势与投资前景预测报告
- 2025-2030喷雾干燥仪市场前景分析及投资策略与风险管理研究报告
- 2025-2030口腔护理用品产业市场发展分析及发展趋势与投资战略研究报告
- 2025年中国短圆柱滚子轴承市场调查研究报告
- 湖北省十一校2024-2025学年高三第二次联考数学试卷(解析版)
- 《手工制作》课件-幼儿园挂饰
- 鼓励员工发现安全隐患的奖励制度
- 苏教版一年级下册数学全册教学设计(配2025年春新版教材)
- 人武专干考试题型及答案
- 2025届高三化学二轮复习 化学反应原理综合 课件
- 2025年北京五湖四海人力资源有限公司招聘笔试参考题库含答案解析
- 常见的酸和碱第2课时酸的化学性质 2024-2025学年九年级化学人教版(2024)下册
- 欢乐购物街-认识人民币(说课稿)-2024-2025学年人教版数学一年级下册
- 2025年中国南方航空股份有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论