版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
猜想01三角形(五种解题模型专练)题型一:A字型题型二:8字型题型三:燕尾型题型四:双角平分线型题型五:风筝型题型一:A字型1.(2022秋•渝北区校级期末)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°2.(2022秋•济宁期末)如图,△ABC中,∠B=80°,∠C=70°,将△ABC沿EF折叠,A点落在形内的A′,则∠1+∠2的度数为.3.(2022秋•平桥区期末)探索归纳:(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2=.(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=.(3)如图2,根据(1)与(2)的求解过程,你归纳猜想∠1+∠2与∠A的关系是.(4)如图3,若没有剪掉∠A,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系,并说明理由.4.(2022秋•运城期末)一个三角形纸片ABC沿DE折叠,使点A落在点A′处.(点A′在△ABC的内部)(1)如图1,若∠A=45°,则∠1+∠2=°.(2)利用图1,探索∠1,∠2与∠A之间的数量关系,并说明理由.(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中得出的结论求∠BA′C的度数.5.(2022秋•香坊区期末)已知:四边形ABCD,连接AC,AD=CD,∠DAC=∠ABC,∠DCA=∠BAC,AD∥BC.(1)如图1,求证:△ABC是等边三角形;(2)过点A作AM⊥BC于点M,点N为AM上一点(不与点A重合),∠FNG=120°,∠FNG的边NF交BA的延长线于点F,另一边NG交AC的延长线于点G,如图2,点N与点M重合时,求证:NF=NG;(3)如图3,在(2)的条件下,点N不与点M重合,过点N作NE⊥AM,交AC于点E,EN:CM=3:4,AF=3,CG=4,点H为AD上一点,连接EH、GH,GH交CD于点R,EH=EG,求DR的长.题型二:8字型1.(2023春•侯马市期末)如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为2.(2022秋•新乡期末)如图所示,∠A+∠B+∠C+∠D+∠E+∠F=度.3.(2021秋•正阳县期末)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8”字型.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).4.(2021秋•大兴区期末)在△ABC中,AC=BC,∠ACB=90°,点D是直线AC上一动点,连接BD并延长至点E,使ED=BD.过点E作EF⊥AC于点F.(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:2AD=AF+EF.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是.5.(2022秋•江岸区期末)已知△ABC是等边三角形.(1)如图1,点D是AB边的中点,点P为射线AC上一动点,当△CDP是轴对称图形时,∠APD的度数为;(2)如图2,AE∥BC,点D在AB边上,点F在射线AE上,且DC=DF,作FG⊥AC于G,当点D在AB边上移动时,请同学们探究线段AD,AC,CG之间有什么数量关系,并对结论加以证明;(3)如图3,点R在BC延长线上,连接AR,S为AR上一点,AS=BC,连接BS交AC于T,若AT=2n,SR=n,直接写出线段的值为.题型三:燕尾型1.(2019秋•建平县期末)探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.2.(2021秋•东源县校级期末)如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,请发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,直接写出∠ABX+∠ACX的结果;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2、…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.3.(2022秋•盐湖区期末)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.4.(2018秋•兰州期末)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.题型四:双角平分线型1.(2022秋•上杭县校级期末)如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为()A.60° B.80° C.70° D.45°2.(2021秋•蜀山区期末)如图,△ABC中,AB=6,AC=8,∠ABC、∠ACB的平分线BD、CD交于点D.过点D作EF∥BC,分别交AB、AC于点E、F,则△AEF的周长为()A.12 B.13 C.14 D.153.(2021秋•道里区期末)如图,在△ABC中,BD和CD分别是∠ABC和∠ACB的平分线,EF过点D,且EF∥BC,若BE=3,CF=4,则EF的长为.4.(2021秋•天山区校级期末)如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O.(1)若∠ABC=60°,∠C=70°,求∠DAE的度数.(2)若∠C=70°,求∠BOE的度数.(3)若∠ABC=α,∠C=β(α<β),则∠DAE=.(用含α、β的式子表示)5.(2022秋•新乡期末)如图1,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于F.(1)当BE=5,CF=3,则EF=;(2)当BE>CF时,若CO是∠ACB的外角平分线,如图2,它仍然和∠ABC的角平分线相交于点O,过点O作EF∥BC,交AB于E,交AC于F,试判断EF,BE,CF之间的关系,并说明理由.6.(2021秋•玉林期末)如图,在△ABC中,AD是高,AE,BF分别是∠BAC、∠ABC的角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.7.(2022秋•东昌府区校级期末)如图1,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)猜想:EF与BE、CF之间有怎样的关系.(2)如图2,若AB≠AC,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.(3)如图3,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.8.(2022秋•即墨区期末)三角形内角和定理告诉我们:三角形三个内角的和等于180°如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.【定理证明】已知:△ABC如图①,求证:∠A+∠B+∠C=180°.【定理推论】如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD=,从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=80°,∠DBC=150°,则∠ACB=.(2)若∠A=80°,则∠DBC+∠ECB=.【拓展延伸】如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=80°,∠P=150°,则∠DBP+∠ECP=.(2)分别作∠DBP和∠ECP的平分线BM、CN,如图⑤,若BM∥CN,则∠A和∠P的关系为.(3)分别作∠DBP和∠ECP的平分线,交于点O,如图⑥,求出∠A,∠O和∠P的数量关系,并说明理由.9.(2022秋•清河区校级期末)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠APC的度数;(2)若AE=3,CD=4,求线段AC的长.题型五:风筝型1.(2022春•栖霞市期末)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40° B.80° C.90° D.140°2.(2021秋•吴川市校级期末)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β3.(2023春•曲阳县期末)如图,在△ABC中,∠B=32°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京交通大学《自动化专业综合实验》2023-2024学年第一学期期末试卷
- 拼花地板电子打蜡机相关项目建议书
- 生产运作管理课程设计书
- 指甲剪项目评价分析报告
- 服装课程设计文
- 微芯片相关项目建议书
- 指甲表皮保护霜市场环境与对策分析
- 旋转式奶酪擦丝器项目可行性实施报告
- 简易数据库课程设计实例
- 柔道服相关项目建议书
- 阳光心理激昂青春
- 美术教师招聘考试试题及答案+教师招聘考试试题及答案大全
- 2024年医院医疗质量管理与考核细则例文(三篇)
- 2024年全国成人高考《时事政治》试题预测及答案
- 河南省水利第一工程局集团有限公司招聘考试试卷2022
- 交通行业智能交通系统建设与运营维护方案
- 基础模块 1 Unit 3 Shopping 单元过关检测-【中职适用】2025年高考英语一轮复习教材全面梳理(高教版2023修订版)
- 2024-2025学年北师大版七年级数学上册期末测试压轴题考点模拟训练(一)
- 2024年人教版五年级数学(上册)期末考卷及答案(各版本)
- 新修订《军人抚恤优待条例》解读:军人权益的全面保障
- 2024年秋新北师大版七年级上册数学教学课件 第三章 整式及其加减 问题解决策略:归纳
评论
0/150
提交评论