版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§1.1集合及其运算最新考纲考情考向分析1.了解集合的含义,体会元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用维恩(Venn)图表达集合的基本关系及集合的基本运算.集合的交、并、补运算及两集合间的包含关系是考查的重点,在集合的运算中经常与不等式、函数相结合,解题时常用到数轴和维恩(Venn)图,考查学生的数形结合思想和计算推理能力,题型以选择题为主,低档难度.1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN+(或N*)ZQR2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中AB(或BA)集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言维恩(Venn)图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁UA={x|x∈U且x∉A}知识拓展1.若有限集合A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁UA)=∅;A∪(∁UA)=U;∁U(∁UA)=A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若{x2,1}={0,1},则x=0,1.(×)(4){x|x≤1}={t|t≤1}.(√)(5)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(6)若A∩B=A∩C,则B=C.(×)题组二教材改编2.已知U={α|0°<α<180°},A={x|x是锐角},B={x|x是钝角},则∁U(A∪B)=________.答案{x|x是直角}3.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为________.答案2解析集合A表示以(0,0)为圆心,1为半径的单位圆,集合B表示直线y=x,圆x2+y2=1与直线y=x相交于两点eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),\f(\r(2),2))),eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(2),2),-\f(\r(2),2))),则A∩B中有两个元素.题组三易错自纠4.已知集合A={1,3,eq\r(m)},B={1,m},A∪B=A,则m等于()A.0或eq\r(3) B.0或3C.1或eq\r(3) D.1或3或0答案B解析A={1,3,eq\r(m)},B={1,m},A∪B=A,故B⊆A,所以m=3或m=eq\r(m),即m=3或m=0或m=1,其中m=1不符合题意,所以m=0或m=3,故选B.5.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A⊆B,则实数a的取值范围是____________.答案(3,+∞)解析A={x|x2-2x-3≤0}={x|-1≤x≤3},∵A⊆B,B={x|x<a},∴a>3.6.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=________.答案0或eq\f(9,8)解析若a=0,则A=eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(2,3))),符合题意;若a≠0,则由题意得Δ=9-8a=0,解得a=eq\f(9,8).综上,a的值为0或eq\f(9,8).题型一集合的含义1.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.答案1解析∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.经检验,a=1符合题意.2.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是()A.2B.3C.4D.5答案B解析B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.思维升华(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.题型二集合的基本关系典例(1)设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的集合B的个数是()A.5B.4C.3D.2答案B解析∵{1,2}⊆B,I={1,2,3,4},∴满足条件的集合B有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.(2)已知集合A={x|x2-2019x+2018<0},B={x|x<a},若A⊆B,则实数a的取值范围是________________________________________________________________________.答案[2018,+∞)解析由x2-2019x+2018<0,解得1<x<2018,故A={x|1<x<2018}.又B={x|x<a},A⊆B,如图所示,可得a≥2018.引申探究本例(2)中,若将集合B改为{x|x≥a},其他条件不变,则实数a的取值范围是____________.答案(-∞,1]解析A={x|1<x<2018},B={x|x≥a},A⊆B,如图所示,可得a≤1.思维升华(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、维恩(Venn)图等来直观解决这类问题.跟踪训练(1)已知集合A={x∈R|x2+x-6=0},B={x∈R|ax-1=0},若B⊆A,则实数a的值为()A.eq\f(1,3)或-eq\f(1,2) B.-eq\f(1,3)或eq\f(1,2)C.eq\f(1,3)或-eq\f(1,2)或0 D.-eq\f(1,3)或eq\f(1,2)或0答案D解析由题意知,A={2,-3}.当a=0时,B=∅,满足B⊆A;当a≠0时,ax-1=0的解为x=eq\f(1,a),由B⊆A,可得eq\f(1,a)=-3或eq\f(1,a)=2,∴a=-eq\f(1,3)或a=eq\f(1,2).综上可知,a的值为-eq\f(1,3)或eq\f(1,2)或0.(2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是____________.答案(-∞,4]解析当B=∅时,有m+1≥2m-1,则m≤2;当B≠∅时,若B⊆A,如图,则eq\b\lc\{\rc\(\a\vs4\al\co1(m+1≥-2,,2m-1≤7,,m+1<2m-1,))解得2<m≤4.综上,m的取值范围是(-∞,4].题型三集合的基本运算命题点1集合的运算典例(1)(2017·全国Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅答案A解析∵B={x|3x<1},∴B={x|x<0}.又A={x|x<1},∴A∩B={x|x<0},A∪B={x|x<1}.故选A.(2)(2018届广东珠海二中月考)已知集合A={x|x2-2x>0},B={x|-eq\r(5)<x<5},则()A.A∩B=∅ B.A⊆BC.B⊆A D.A∪B=R答案D解析∵A={x|x>2或x<0},∴A∪B=R.命题点2利用集合的运算求参数典例(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1答案D解析因为A∩B≠∅,所以集合A,B有公共元素,作出数轴,如图所示,易知a>-1.(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.4答案D解析由题意可得{a,a2}={4,16},∴a=4.(3)设集合A={0,-4},B={x|x2+2(a+1)x+a2-1=0,x∈R}.若A∩B=B,则实数a的取值范围是______.答案(-∞,-1]∪{1}解析因为A={0,-4},所以B⊆A分以下三种情况:①当B=A时,B={0,-4},由此可知,0和-4是方程x2+2(a+1)x+a2-1=0的两个根,由根与系数的关系,得eq\b\lc\{\rc\(\a\vs4\al\co1(Δ=4a+12-4a2-1>0,,-2a+1=-4,,a2-1=0,))解得a=1;②当B≠∅且BA时,B={0}或B={-4},并且Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足题意;③当B=∅时,Δ=4(a+1)2-4(a2-1)<0,解得a<-1.综上所述,所求实数a的取值范围是(-∞,-1]∪{1}.思维升华(1)一般来讲,集合中的元素若是离散的,则用维恩(Venn)图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.跟踪训练(1)(2017·天津)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C等于()A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}答案B解析A∪B={1,2,4,6}.又C={x∈R|-1≤x≤5},则(A∪B)∩C={1,2,4},故选B.(2)已知集合A={x|x2-x-12≤0},B={x|2m-1<x<m+1},且A∩B=B,则实数m的取值范围为()A.[-1,2) B.[-1,3]C.[2,+∞) D.[-1,+∞)答案D解析由x2-x-12≤0,得(x+3)(x-4)≤0,即-3≤x≤4,所以A={x|-3≤x≤4}.又A∩B=B,所以B⊆A.①当B=∅时,有m+1≤2m-1,解得m≥2;②当B≠∅时,有eq\b\lc\{\rc\(\a\vs4\al\co1(-3≤2m-1,,m+1≤4,,2m-1<m+1,))解得-1≤m<2.综上,m的取值范围为[-1,+∞).题型四集合的新定义问题典例若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)等于()A.200B.150C.100D.50答案A解析在集合E中,当s=1时,p=q=r=0,此时只有1个元素;当s=2时,p,q,r∈{0,1},=100.在集合F中,(t,u)的取值可能是(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共10种可能.同理,(v,w)也有10种可能,故card(F)=10×10=100,∴card(E)+card(F)=200.思维升华解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.跟踪训练定义一种新的集合运算△:A△B={x|x∈A,且x∉B}.若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4} B.{x|3≤x≤4}C.{x|3<x<4} D.{x|2≤x≤4}答案B解析A={x|1<x<3},B={x|2≤x≤4},由题意知,B△A={x|x∈B,且x∉A}={x|3≤x≤4}.1.已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.AB D.BA答案D2.(2017·浙江)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q等于()A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)答案A解析∵P={x|-1<x<1},Q={x|0<x<2},∴P∪Q={x|-1<x<2}.故选A.3.(2016·四川)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C解析由题意可知,A∩Z={-2,-1,0,1,2},则A∩Z中的元素的个数为5.故选C.4.(2017·吉林大学附中模拟)若集合A={x∈N|5+4x-x2>0},B={x|x<3},则A∩B等于()A.∅ B.{1,2}C.[0,3) D.{0,1,2}答案D解析由A中不等式变形,得(x-5)(x+1)<0,x∈N,解得-1<x<5,x∈N,即A={0,1,2,3,4},∵B={x|x<3},∴A∩B={0,1,2}.5.(2017·潍坊调研)已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}答案B解析因为A∩B={2,3,4,5},而图中阴影部分为集合A去掉A∩B部分,所以阴影部分所表示的集合为{1}.6.已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集的个数为()A.8B.4C.3D.2答案B解析由题意得P={3,4},∴集合P有4个子集.7.(2017·全国Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B等于()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案C解析∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C.8.已知集合A={x|-1<x<0},B={x|x≤a},若A⊆B,则a的取值范围为()A.(-∞,0] B.[0,+∞)C.(-∞,0) D.(0,+∞)答案B解析用数轴表示集合A,B(如图),由A⊆B,得a≥0.9.已知集合P={x|x2-2x≥0},Q ={x|1<x≤2},则(∁RP)∩Q=________.答案(1,2)解析∵P={x|x≥2或x≤0},∁RP={x|0<x<2},∴(∁RP)∩Q={x|1<x<2}.10.若{3,4,m2-3m-1}∩{2m,-3}={-3},则m=______.答案1解析由集合中元素的互异性,可得eq\b\lc\{\rc\(\a\vs4\al\co1(m2-3m-1=-3,,2m≠-3,,2m≠3,,2m≠4,))所以m=1.11.(2018·衡水模拟)若集合A={y|y=lgx},B={x|y=eq\r(x)},则集合A∩B=________.答案[0,+∞)解析集合A={y|y=lgx}={y|y∈R}=R,B={x|y=eq\r(x)}={x|x≥0},则集合A∩B={x|x≥0}=[0,+∞).12.已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c的取值范围是________.答案[1,+∞)解析由题意知,A={x|y=lg(x-x2)}={x|x-x2>0}=(0,1),B={x|x2-cx<0,c>0}=(0,c).由A⊆B,画出数轴,如图所示,得c≥1.13.(2017·黄山二模)已知集合A={-2,-1,0,1,2},∁RB=eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(\f(x-1,x+2)≥0)))),则A∩B等于()A.{-1,0,1} B.{-1,0}C.{-2,-1,0}
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售电极夹具合同模板
- 栏杆销售合同模板
- 工控产品购销合同模板
- 系统升级合同模板
- 沈阳市二手车买卖合同模板
- 安装集体供暖合同模板
- 匾额木板出售合同模板
- 工程装修合同模板
- 农业开发项目合同模板
- 车位管理服务合同模板
- 米托蒽醌药物代谢动力学研究
- 2024年景区托管运营合作协议
- SMW工法桩施工课件
- MOOC 学术英语进阶-北京科技大学 中国大学慕课答案
- 2024年4月自考05755卫生统计学答案及评分参考
- 2023年政府采购评审专家考试题库
- DL《水电站泄水建筑物水力安全评价导则》
- 《高一学期期中考试动员》主题班会课件
- MOOC 理论力学-国防科技大学 中国大学慕课答案
- 克罗恩病的护理查房
- (2024)爱国主义教育知识竞赛题及答案
评论
0/150
提交评论