版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州一中2025届数学高一上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象大致为A. B.C. D.2.在平面直角坐标系中,角的顶点与原点重合,角的始边与轴非负半轴重合,角的终边经过点,则()A B.C. D.3.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或4.样本,,,的平均数为,样本,,,的平均数为,则样本,,,,,,,的平均数为A B.C. D.5.在中,若,且,则的形状为A.等边三角形 B.钝角三角形C.锐角三角形 D.等腰直角三角形6.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a7.若单位向量,满足,则向量,夹角的余弦值为()A. B.C. D.8.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱 B.圆锥C.四面体 D.三棱柱9.定义在上的函数满足,且当时,,若关于的方程在上至少有两个实数解,则实数的取值范围为()A. B.C. D.10.已知,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知命题“,”是真命题,则实数的取值范围为__________12.在平面四边形中,,若,则__________.13.已知角的终边经过点,则的值为_______________.14.若函数与函数的最小正周期相同,则实数______15.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.16.的值是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于x的不等式的解集为R,记实数a的所有取值构成的集合为M.(1)求M;(2)若,对,有,求t的最小值.18.已知函数,(1)试比较与的大小关系,并给出证明;(2)解方程:;(3)求函数,(是实数)的最小值19.已知函数是定义在R上的奇函数,且当时,.(1)求函数的解析式;(2)若函数在区间上单调递增,求实数的取值范围.20.已知函数,(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)如果,求x的取值范围.21.(1)已知,求的值;(2)已知,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用函数为奇函数及在时函数值正负,即可得答案.【详解】由于函数的定义域关于原点对称,且,所以函数的奇函数,排除B,C选项;又因为,故排除D选项.故选:A.【点睛】本题考查根据函数的解析式选择函数的图象,考查数形结合思想,求解时注意根据解析式发现函数为奇函数及特殊点函数值的正负.2、A【解析】根据任意角的三角函数定义即可求解.【详解】解:由题意知:角的终边经过点,故.故选:A.3、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.4、D【解析】样本,,,的总和为,样本,,,的总和为,样本,,,,,,,的平均数为,选D.5、D【解析】由条件可得A为直角,结合,可得解.【详解】,=,又,为等腰直角三角形,故选D.【点睛】本题考查了向量数量积表示两个向量的垂直关系,考查了三角形的形状,属于基础题.6、B【解析】结合指数函数、幂函数的单调性确定正确选项.【详解】在上递增,在上递增..故选:B7、A【解析】将平方可得,再利用向量夹角公式可求出.【详解】,是单位向量,,,,即,即,解得,则向量,夹角的余弦值为.故选:A.8、A【解析】因为圆柱的三视图有两个矩形,一个圆,正视图不可能是三角形,而圆锥、四面体(三棱锥)、三棱柱的正视图都有可能是三角形,所以选A.考点:空间几何体的三视图.9、C【解析】把问题转化为函数在上的图象与直线至少有两个公共点,再数形结合,求解作答.【详解】函数满足,当时,,则当时,,当时,,关于的方程在上至少有两个实数解,等价于函数在上的图象与直线至少有两个公共点,函数的图象是恒过定点的动直线,函数在上的图象与直线,如图,观察图象得:当直线过点时,,将此时的直线绕点A逆时针旋转到直线的位置,直线(除时外)与函数在上的图象最多一个公共点,此时或或a不存在,将时的直线(含)绕A顺时针旋转到直线(不含直线)的位置,旋转过程中的直线与函数在上的图象至少有两个公共点,此时,所以实数的取值范围为.故选:C【点睛】方法点睛:图象法判断函数零点个数,作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.10、A【解析】化简得,再利用充分非必要条件定义判断得解.【详解】解:.因为“”是“”的充分非必要条件,所以“”是“”的充分非必要条件.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【点睛】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题12、##1.5【解析】设,在中,可知,在中,可得,由正弦定理,可得答案.【详解】设,在中,,,,在中,,,,,由正弦定理得:,得,.故答案为:.13、【解析】到原点的距离.考点:三角函数的定义.14、【解析】求出两个函数的周期,利用周期相等,推出a的值【详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【点睛】本题是基础题,考查三角函数的周期的求法,考查计算能力15、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.16、【解析】分析:利用对数运算的性质和运算法则,即可求解结果.详解:由.点睛:本题主要考查了对数的运算,其中熟记对数的运算法则和对数的运算性质是解答的关键,着重考查了推理与运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)分类讨论即可求得实数a的所有取值构成的集合M;(2)先求得的最大值2,再解不等式即可求得t的最小值.【小问1详解】当时,满足题意;当时,要使不等式的解集为R,必须,解得,综上可知,所以【小问2详解】∵,∴,∴,(当且仅当时取“=”)∴,∵,有,∴,∴,∴或,又,∴,∴t的最小值为1.18、(1)(2)或.(3)【解析】(1)与作差,配方后即可得;(2)原方程化为,设,可得,进而可得结果;(3)令,则,函数可化为,利用二次函数的性质分情况讨论,分别求出两段函数的最小值,比较大小后可得各种情况下函数,(是实数)的最小值.试题解析:(1)因为,所以(2)由,得,令,则,故原方程可化为,解得,或(舍去),则,即,解得或,所以或(3)令,则,函数可化为①若,当时,,对称轴,此时;当时,,对称轴,此时,故,②若,当,,对称轴,此时;当时,,对称轴,此时,故,③若,当时,,对称轴,此时;当时,,对称轴,此时,故,;④若,当时,,对称轴,此时;当时,,对称轴,此时,则时,,时,,故,⑤若,当时,,对称轴,此时;当时,,对称轴,此时,因为时,,故,综述:【方法点睛】本题主要考查指数函数的性质分段函数的解析式和性质、分类讨论思想及方程的根与系数的关系.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.19、(1);(2).【解析】(1)设,计算,再根据奇函数的性质,得,,即可得函数在R上的解析式;(2)作出函数的图像,若在区间上单调递增,结合函数图像,列关于的不等式组求解.详解】(1)设,则,所以又为奇函数,所以,于是时,,所以函数的解析式为(2)作出函数的图像如图所示,要使在上单调递增,结合的图象知,所以,所以的取值范围是.20、(1);(2)见解析;(3)【解析】(1)根据真数大于零列不等式,解得结果,(2)根据奇函数定义判断并证明结果,(3)根据底与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 带锁小柜相关项目实施方案
- 贵州省贵阳市花溪区高坡民族中学2024-2025学年九年级上学期10月期中化学试题
- 家用电动食品脱水器相关项目实施方案
- 玫瑰黏土课程设计思路
- 工业通风课程设计
- 洁厕凝胶项目评价分析报告
- 旋转碾碎机项目可行性实施报告
- 育婴师雇佣合同
- 实验教学工作总结
- 房屋办公室和花园用家具项目可行性实施报告
- 市政工程类建筑施工项目危险源辨识及风险管控清单
- 校本课程《硬笔书法》教案(完整版)
- 化学实验室仪器药品清单1
- 小学生义务教育劳动课烹饪与营养教案(新版2022)
- 小学数学校本教材(共51页)
- 苏少版三年级美术上册美术知识点
- 公车使用登记表
- 钢结构质量管理制度
- 声母韵母整体认读音节默写表
- 食堂伙食费开支明细表
- som73个作品som金奥大厦建筑设计
评论
0/150
提交评论