版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山市2025届数学高一上期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为()A.3cm B.6cmC.9cm D.12cm2.直线的倾斜角是()A.30° B.60°C.120° D.150°3.设函数,,则函数的零点个数是A.4 B.3C.2 D.14.下列函数中最小正周期为的是A. B.C. D.5.设,,那么等于A. B.C. D.6.如图,一根绝对刚性且长度不变、质量可忽略不计线,一端固定,另一端悬挂一个沙漏让沙漏在偏离平衡位置一定角度后在重力作用下在铅垂面内做周期摆动.设线长为,沙漏摆动时离开平衡位置的位移(单位:cm)与时间(单位:s)的函数关系是,.若,要使沙漏摆动的最小正周期是,则线长约为()A.5m B.C. D.20m7.命题“,”的否定为()A., B.,C., D.,8.下列函数中,既是偶函数,又是(0,+∞)上的减函数的是()A. B.C. D.9.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.10.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.12.已知函数对于任意,都有成立,则___________13.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________14.已知扇形的半径为2,面积为,则该扇形的圆心角的弧度数为______.15.已知函数是定义在上的奇函数,当时,,则__________.16.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算方法.如图所示,弧田是由圆弧和其对弦围成的图形,若弧田所在圆的半径为6,弦的长是,则弧田的弧长为________;弧田的面积是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且,点P沿单位圆按逆时针方向旋转角后到达点.(1)求阴影部分的面积;(2)当时,求的值.18.已知集合,集合.(1)求.(2)求,求的取值范围.19.设函数是定义域为R的奇函数.(1)求;(2)若,求使不等式对一切恒成立的实数k的取值范围;(3)若函数的图象过点,是否存在正数,使函数在上的最大值为2,若存在,求出a的值;若不存在,请说明理由.20.已知.(1)求的值;(2)若,求的值.21.函数y=cosx+sinx的最小正周期、最大值、最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用扇形弧长公式进行求解.【详解】设扇形弧长为lcm,半径为rcm,则,即且,解得:(cm),故此扇形的弧长为9cm.故选:C2、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】函数的零点个数就是函数的图象和函数的图象的交点个数,分别画出函数的图象和函数的图象,如图,由图知,它们的交点个数是,函数的零点个数是,故选B.【方法点睛】已知函数零点(方程根)的个数求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.4、A【解析】利用周期公式对四个选项中周期进行求解【详解】A项中Tπ,B项中T,C项中T,D项中T,故选A【点睛】本题主要考查了三角函数周期公式的应用.对于带绝对值的函数解析式,可结合函数的图象来判断函数的周期5、B【解析】由题意得.选B6、A【解析】根据余弦函数的周期公式计算,即可求得答案.【详解】因为函数最小正周期是,故,即,解得(m),故选:A7、B【解析】利用含有量词的命题的否定方法:先改变量词,然后再否定结论,判断即可.【详解】解:由含有量词的命题的否定方法:先改变量词,然后再否定结论可得,命题“”的否定为:.故选:B.8、D【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【详解】解:根据题意,依次分析选项:对于,是奇函数,不符合题意;对于,,是指数函数,不是偶函数,不符合题意;对于,,是偶函数,但在上是增函数,不符合题意;对于,,为开口向下的二次函数,既是偶函数,又是上的减函数,符合题意;故选.【点睛】本题考查函数单调性与奇偶性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.9、A【解析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A10、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题12、##【解析】由可得时,函数取最小值,由此可求.【详解】,其中,.因为,所以,,解得,,则故答案为:.13、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.14、【解析】由扇形的面积公式和弧度制的定义,即可得出结果.【详解】由扇形的面积公式可得,所以圆心角为.故答案为:15、12【解析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.16、①.②.【解析】在等腰三角形中求得,由扇形弧长公式可得弧长,求出扇形面积减去三角形面积可得弧田面积【详解】∵弧田所在圆的半径为6,弦的长是,∴弧田所在圆的圆心角,∴弧田的弧长为;扇形的面积为,三角形的面积为,∴弧田的面积为.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由三角函数定义求出点坐标,用扇形面积减三角形面积可得弓形面积;(2)由三角函数定义写出点坐标,计算后用二倍角公式和诱导公式计算【详解】(1)由三角函数定义可知,点P的坐标为.所以面积为,扇形OPA的面积为.所以阴影部分的面积为.(2)由三角函数的定义,可得.当时,,即,所以.【点睛】本题考查三角函数的定义,正弦的二倍角公式和诱导公式,属于基础题.18、(1)(2)【解析】(1)由不等式,求得,即可求解;(2)由,得到,列出不等式组,即可求解.【小问1详解】解:由,即,可得,可得集合.【小问2详解】解:因为,且集合,又因为,即,当时,即,可得,此时满足;当时,则满足,解得,综上可得,,即实数的取值范围.19、(1)(2)(3)【解析】(1)根据是定义域为R的奇函数,由求解;(2),得到b的范围,从而得到函数的单调性,将对一切恒成立,转化为对一切恒成立求解;(3)根据函数的图象过点,求得b,得到,令,利用复合函数求最值的方法求解.【小问1详解】解:函数是定义域为R的奇函数,所以,解得,此时,满足;【小问2详解】因为,所以,解得,所以在R上是减函数,等价于,所以,即,又因为不等式对一切恒成立,所以对一切恒成立,所以,解得,所以实数k的取值范围是;【小问3详解】因为函数的图象过点,所以,解得,则,令,则,当时,是减函数,,因为函数在上的最大值为2,所以,即,解得,不成立;当时,是增函数,,因为函数在上最大值为2,所以,即,解得或(舍去),所以存在正数,使函数在上的最大值为2.20、(1);(2).【解析】(1)根据三角函数的基本关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年水镁石项目立项申请报告模范
- 数字调制和解调课程设计
- (三)劳技社团活动方案
- 电子课程设计电子时钟
- 国别史梳理 高三统编版(2019)历史二轮专题复习
- 泥塑实践课程设计
- JJG 1081.2-2024 铁路机车车辆轮径量具检定规程 第2部分:轮径测量器
- 有关学生军训心得大一(35篇)
- 第一季度的工作总结8篇
- 2024-2030年全球及中国医疗实践管理软件(PMS)行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 《北京市社会保险单位信息变更登记表》
- 2024年全国统考“营养师或营养指导员”相关知识考前试题库与参考答案
- 2024CSCO结直肠癌诊疗指南解读
- (正式版)QBT 2174-2024 不锈钢厨具
- 监控维修施工方案
- 食品安全管理内外部环境因素分析及应对措施
- 三年级音乐《捉迷藏》课件
- 国家开放大学《管理英语4》章节测试参考答案
- 8-1+野生动物及生境调查.ppt
- 产科护士各班工作流程
- 篮球比赛技术统计表(通用版)
评论
0/150
提交评论