版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省长春市榆树第一高级中学高二上数学期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列为等比数列,且,,则()A.8 B.16C.32 D.642.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−33.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.4.若两条平行线与之间的距离是2,则m的值为()A.或11 B.或10C.或12 D.或115.若数列为等差数列,数列为等比数列,则下列不等式一定成立的是()A. B.C. D.6.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.7.曲线y=lnx在点M处的切线过原点,则该切线的斜率为()A.1 B.eC.-1 D.8.已知直线和圆,则“”是“直线与圆相切”的().A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件9.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定10.设集合,,则()A. B.C. D.11.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg12.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.48二、填空题:本题共4小题,每小题5分,共20分。13.设正项等比数列的公比为,前项和为,若,则_______________.14.若等比数列的前n项和为,且,则__________.15.设实数x,y满足,则的最小值为______16.如图,在棱长为2的正方体中,E为BC的中点,点P在线段上,分别记四棱锥,的体积为,,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上横坐标为3的点P到焦点F的距离为4.(1)求抛物线E的方程;(2)点A、B为抛物线E上异于原点O的两不同的点,且满足.若直线AB与椭圆恒有公共点,求m的取值范围.18.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.19.(12分)在平面直角坐标系中,已知点.点M满足.记M的轨迹为C.(1)求C的方程;(2)直线l经过点,与轨迹C分别交于点M、N,与直线交于点Q,求证:.20.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程21.(12分)如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积22.(10分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【详解】解:设等比数列公比为,因为、,所以,所以;故选:B2、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B3、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B4、A【解析】利用平行线间距离公式进行求解即可.【详解】因为两条平行线与之间的距离是2,所以,或,故选:A5、D【解析】对选项A,令即可检验;对选项B,令即可检验;对选项C,令即可检验;对选项D,设出等差数列的首项和公比,然后作差即可.【详解】若,则可得:,故选项A错误;若,则可得:,故选项B错误;若,则可得:,故选项C错误;不妨设的首项为,公差为,则有:则有:,故选项D正确故选:D6、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.7、D【解析】设出点坐标,结合导数列方程,由此求得切点坐标并求得切线的斜率.【详解】设切点为,,故在点的切线的斜率为,所以,所以切点为,切线的斜率为.故选:D8、B【解析】首先求出直线与圆相切时的取值,再根据充分必要条件的定义判断.【详解】若直线与圆相切,则圆心到直线的距离,则,解得,所以“”是“直线与圆相切”的充分不必要条件.故选:B【点睛】本题考查直线与圆的位置关系,充分必要条件,重点考查计算,理解能力,属于基础题型.9、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.10、C【解析】根据集合交集和补集的概念及运算,即可求解.【详解】由题意,集合,,根据补集的运算,可得,所以.故选:C.11、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D12、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由可知公比,所以直接利用等比数列前项和公式化简,即可求出【详解】解:因为,所以,所以,所以,化简得,因为等比数列的各项为正数,所以,所以,故答案为:【点睛】此题考查等比数列前项和公式的应用,考查计算能力,属于基础题14、5【解析】根据题意和等比数列的求和公式,求得,结合求和公式,即可求解.【详解】因为,若时,可得,故,所以,化简得,整理得,解得或,因为,解得,所以.故答案为:.15、5【解析】画出可行域,利用目标函数的几何意义即可求解【详解】画出可行域和目标函数如图所示:根据平移知,当目标函数经过点时,有最小值为5.故答案为:5.16、【解析】设,用参数表示目标函数,利用均值不等式求最值即可.【详解】取线段AD中点为F,连接EF、D1F,过P点引于M,于N,则平面,平面,则,∴,设,则,,即,,∴,当且仅当时,等号成立,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由焦半径公式可得,求解即可得答案;(2)由题意,直线AB斜率不为0,设,,联立直线与抛物线的方程,由韦达定理及可得,从而可得直线AB恒过定点,进而可得定点在椭圆内部或椭圆上即可求解.【小问1详解】解:因为抛物线上横坐标为3的点P到焦点F的距离为4,所以,解得,所以抛物线E的方程为;【小问2详解】解:由题意,直线AB斜率不为0,设,,由,可得,所以,因为,即,所以,所以,即,所以,所以直线,所以直线AB恒过定点,因为直线AB与椭圆恒有公共点,所以定点在椭圆内部或椭圆上,即,所以.18、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.19、(1)(2)证明见解析【解析】(1)根据已知得点M的轨迹C为椭圆,根据椭圆定义可得方程;(2)直线的方程设为,与椭圆方程联立,利用韦达定理及线段长公式进行计算即可.【小问1详解】由椭圆定义得,点M的轨迹C为以点为焦点,长轴长为4的椭圆,设此椭圆的标准方程为,则由题意得,所以C方程为;【小问2详解】设点的坐标分别为,由题意知直线的斜率一定存在,设为,则直线的方程可设为,与椭圆方程联立可得,由韦达定理知,所以,,又因为,所以又由题知,所以,所以,所以,得证.20、(1);(2).【解析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【点睛】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.21、(1)证明见解析;(2).【解析】【小问1详解】因为△ABC和△PBC为正三角形,D为BC的中点,所以,又,所以平面【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分包工程安全协议完整版
- 维修合同的标的和标的物
- 影视剧制片人聘用合同协议书范本签约版5
- 铝锭生产线建设合同(2024版):生产线建设协议
- 二零二四年度高校毕业设计指导服务协议3篇
- 房屋托管出租的合同范本
- 公路排水沟施工合同范本
- 2024年度仪器设备采购与安装合同
- 《产后出血的处理》课件
- 2024版高层住宅工程防火设施合同
- 安全质量管理员岗位职责
- 膝关节镜手术
- 华为认证无线工程师H35-460考试题及答案
- 数学-2025届湖北省武汉市江岸区高三11月调研试题+答案
- GB/T 26342-2024国际间遗体转运棺柩
- 2020-2024年上海市春考语文真题试卷汇编含答案
- 保安公司转让合同范例
- 人教版六年级语文上册第六单元习作:《学写倡议书》授课课件
- 天津市五区县重点校联考2024-2025学年高三上学期11月期中考试 语文 版含答案
- 云海Insight HD V4.6.5技术白皮书
- 植物学#-形考作业3-国开(ZJ)-参考资料
评论
0/150
提交评论