版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省淮北师大学附属实验中学高一上数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列全称量词命题与存在量词命题中:①设A、B为两个集合,若,则对任意,都有;②设A、B为两个集合,若,则存在,使得;③是无理数,是有理数;④是无理数,是无理数.其中真命题的个数是()A.1 B.2C.3 D.42.已知,则A.2 B.7C. D.63.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则4.已知幂函数的图象过点,则下列说法中正确的是()A.的定义域为 B.的值域为C.为偶函数 D.为减函数5.已知角的终边经过点,则()A. B.C. D.6.已知,,,则()A. B.C. D.7.函数,值域是()A. B.C. D.8.已知矩形,,,将矩形沿对角线折成大小为的二面角,则折叠后形成的四面体的外接球的表面积是A. B.C. D.与的大小有关9.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.10.在正方体中,分别是的中点,则直线与平面所成角的余弦值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是_________.12.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______13.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______14.已知为角终边上一点,且,则______15.已知幂函数的图象过点,则______.16.已知函数,设,,若成立,则实数的最大值是_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;(ii)若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.18.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a取值范围.19.若存在实数、使得,则称函数为、的“函数”(1)若.为、的“函数”,其中为奇函数,为偶函数,求、的解析式;(2)设函数,,是否存在实数、使得为、的“函数”,且同时满足:①是偶函数;②的值域为.若存在,请求出、的值;若不存在,请说明理由.(注:为自然数.)20.已知函数,其中,且.(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.21.已知函数的最小正周期为,函数的最大值是,最小值是.(1)求、、的值;(2)指出的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】对于命题①②,利用全称量词命题与存在量词命题的定义结合集合包含与不包含的意义直接判断;对于命题③④,举特例说明判断作答.【详解】对于①,因集合A、B满足,则由集合包含关系的定义知,对任意,都有,①是真命题;对于②,因集合A、B满足,则由集合不包含关系的定义知,存在,使得,②是真命题;对于③,显然是无理数,也是无理数,则③是假命题;对于④,显然是无理数,却是有理数,则④是假命题.所以①②是真命题.故选:B2、A【解析】先由函数解析式求出,从而,由此能求出结果【详解】,,,故选A【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.当出现的形式时,应从内到外依次求值3、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质4、C【解析】首先求出幂函数解析式,再根据幂函数的性质一一判断即可.【详解】解:因为幂函数的图象过点,所以,所以,所以,定义域为,且,即为偶函数,因为,所以,所以,故A错误,B错误,C正确,又在上单调递减,根据偶函数的对称性可得在上单调递增,故D错误;故选:C5、C【解析】根据任意角的三角函数的定义,求出,再利用二倍角公式计算可得.【详解】解:因为角的终边经过点,所以,所以故选:C6、C【解析】求出集合,利用交集的定义可求得集合.【详解】已知,,,则,因此,.故选:C.7、A【解析】令,求出g(t)的值域,再根据指数函数单调性求f(x)值域.【详解】令,则,则,故选:A.8、C【解析】由题意得,在二面角内的中点O到点A,B,C,D的距离相等,且为,所以点O即为外接球的球心,且球半径为,所以外接球的表面积为.选C9、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.10、C【解析】设正方体的棱长为,如图,连接,它们交于,连接,则平面,而,故就是直线与平面所成的余角,又为直角三角形且,所以,,设直线与平面所成的角为,则,选C.点睛:线面角的计算往往需要先构造面的垂线,必要时还需将已知的面的垂线适当平移才能构造线面角,最后把该角放置在容易计算的三角形中计算其大小.二、填空题:本大题共6小题,每小题5分,共30分。11、(0,1)【解析】将方程的零点问题转化成函数的交点问题,作出函数的图象得到m的范围【详解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)与y=m的图象,要使函数g(x)=f(x)﹣m有3个零点,则y=f(x)与y=m的图象有3个不同的交点,所以0<m<1,故答案为(0,1)【点睛】本题考查等价转化的能力、利用数形结合思想解题的思想方法是重点,要重视12、【解析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,13、【解析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可14、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.15、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.16、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(i)111.95;(ii)0.75.【解析】(1)当时,;当时,,故;(2)(i)直接利用平均值公式求解即可;(ii)根据对立事件的概率公式可得当天的利润不少于元的概率为.试题解析:(1)当时,;当时,.故.(2)(i)这100天中,有5天的日利润为85元,10天的日利润为92元,10天的日利润为99元,5天的日利润为106元,10天的日利润为113元,60天的日利润为120元,故这100天的日利润的平均数为.(ii)当天的利润不少于100元当且仅当日需求量不少于28瓶.当天的利润不少于100元的概率为.【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及平均数公式、对立事件的概率,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1)..(2)【解析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论【详解】(1)因为,所以.函数的大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题19、(1),;(2)存在;,.【解析】(1)由已知条件可得出关于、的等式组,由此可解得函数、的解析式;(2)由偶函数的定义可得出,由函数的值域结合基本不等式以及对数函数的单调性可求得的值,进而可求得的值,即可得解.【小问1详解】解:因为为、的“函数”,所以①,所以因为为奇函数,为偶函数,所以,所以②联立①②解得,【小问2详解】解:假设存在实数、,使得为,的“函数”则①因为是偶函数,所以即,即,因为,整理得因为对恒成立,所②,因为,当且仅当,即时取等号所以,由于的值域为,所以,且又因为,所以,综上,存在,满足要求20、(1)或(2)【解析】(1)因为,根据函数的图像过点,且函数只有一个零点,联立方程即可求得答案;(2)因为,由(1)可知:,可得,根据函数在区间上单调递增,即可求得实数的取值范围.【详解】(1)根据函数的图像过点,且函数只有一个零点可得,整理可得,消去得,解得或当时,,当时,,综上所述,函数的解析式为:或(2)当,由(1)可知:要使函数在区间上单调递增则须满足解得,实数的取值范围为.【点睛】本题考查了求解二次函数解析式和已知复
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湿地管理运营合同范本
- 路桥桩基承包合同范本
- 2024版第四编合同法第四节担保合同履行问题
- 合同供货合同范本
- 2024至2030年中国金刚砂硬化地面涂装系统数据监测研究报告
- 2024至2030年中国混凝土保水保塑剂数据监测研究报告
- 2024至2030年中国工频有芯熔锌铜炉数据监测研究报告
- 2024年度互联网公司短视频制作合同
- 2024年中国负离子强力吸蚊机市场调查研究报告
- 2024年中国百折帘市场调查研究报告
- 泳池专项施工方案
- JJF 1022-1991计量标准命名规范(试行)
- GB/T 31586.2-2015防护涂料体系对钢结构的防腐蚀保护涂层附着力/内聚力(破坏强度)的评定和验收准则第2部分:划格试验和划叉试验
- 涂料原材料(IQC)各项检验标准
- 二年级数学22-分物游戏-优秀课件
- 驻外人员补助标准
- 护士身体不适申请调换岗位申请书(通用6篇)
- 急救用品使用说明
- 农村经济管理 课件
- 畜产品质量安全讲解课件
- traveling-around-the-world的英语知识课件
评论
0/150
提交评论