江西省新余四中2025届数学高一上期末考试模拟试题含解析_第1页
江西省新余四中2025届数学高一上期末考试模拟试题含解析_第2页
江西省新余四中2025届数学高一上期末考试模拟试题含解析_第3页
江西省新余四中2025届数学高一上期末考试模拟试题含解析_第4页
江西省新余四中2025届数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省新余四中2025届数学高一上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数在上是增函数的是A. B.C. D.2.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.3.若函数的三个零点分别是,且,则()A. B.C. D.4.设则()A. B.C. D.5.下列四个函数中,在上为增函数的是()A. B.C. D.6.过原点和直线与的交点的直线的方程为()A. B.C. D.7.函数f(x)=x2-3x-4的零点是()A. B.C. D.8.直线的倾斜角为()A. B.30°C.60° D.120°9.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件10.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.两平行直线与之间的距离______.12.已知集合,,则集合________.13.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.14.函数函数的定义域为________________15.已知函数f(x)是定义在R上的奇函数,当时,,则函数的零点个数为______16.已知角的终边过点,求_________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格(1)求出第4组的频率,并补全频率分布直方图;(2)根据样本频率分布直方图估计样本的中位数与平均数;(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?18.已知函数其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求的解析式;(2)当,求的值域19.已知,(1)求的值;(2)求的值20.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位净化剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:小时)变化的函数关系式近似为.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用(1)若一次喷洒4个单位的净化剂,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(2)若第一次喷洒2个单位的净化剂,3小时后再喷洒2个单位的净化剂,设第二次喷洒小时后空气中净化剂浓度为(毫克/立方米),其中①求的表达式;②求第二次喷洒后的3小时内空气中净化剂浓度的最小值21.已知函数(1)求的值及的单调递增区间;(2)求在区间上的最大值和最小值,以及取最值时x的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,,在区间上单调递增,符合题意;对于B,,为指数函数,在区间上单调递减,不符合题意;对于C,,为对数函数,在区间上单调递减,不符合题意;对于D,反比例函数,在区间上单调递减,不符合题意;故选A【点睛】本题考查函数单调性的判断,属于基础题2、D【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D3、D【解析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【点睛】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理4、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.5、C【解析】A.利用一次函数的性质判断;B.利用二次函数的性质判断;C.利用反比例函数的性质判断;D.由,利用一次函数的性质判断;【详解】A.由一次函数的性质知:在上为减函数,故错误;B.由二次函数的性质知:在递减,在上递增,故错误;C.由反比例函数的性质知:在上递增,在递增,则在上为增函数,故正确;D.由知:函数在上为减函数,故错误;故选:C【点睛】本题主要考查一次函数,二次函数和反比例函数的单调性,属于基础题.6、C【解析】先求出两直线的交点,从而可得所求的直线方程.【详解】由可得,故过原点和交点的直线为即,故选:C.7、D【解析】直接利用函数零点定义,解即可.【详解】由,解得或,函数零点是.故选:.【点睛】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.8、C【解析】根据直线的斜率即可得倾斜角.【详解】因为直线的斜率为,所以直线的倾斜角为满足,即故选:C.9、D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.10、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.12、【解析】根据集合的交集运算,即可求出结果.【详解】因为集合,,所以.故答案为:.13、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%14、(1,3)【解析】函数函数的定义域,满足故答案为(1,3).15、10【解析】将原函数的零点转化为方程或的根,再作出函数y=f(x)的图象,借助图象即可判断作答.【详解】函数的零点即方程的根,亦即或的根,画出函数y=f(x)的图象和直线,如图所示,观察图象得:函数y=f(x)的图象与x轴,直线各有5个交点,则方程有5个根,方程也有5个根,所以函数的零点有10个.故答案为:1016、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)第4组的频率为0.2,作图见解析(2)样本中位数的估计值为,平均数为87.25(3)0.9【解析】(1)利用频率和为1,计算可得答案,计算可得第四个矩形的高度为0.2÷5=0.04,由此作图即可;(2)设样本的中位数为x,由5×0.01+5×0.07+(x﹣85)×0.06=0.5解出即可得到中位数,根据77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10计算即可得到平均数;(3)通过列举法可得所有基本事件的总数以及至少有一人是“优秀”的总数,再利用古典概型概率公式计算可得.【详解】(1)其它组的频率为(0.01+0.07+0.06+0.02)×5=0.8,所以第4组的频率为0.2,频率分布图如图:(2)设样本的中位数为x,则5×0.01+5×0.07+(x﹣85)×0.06=0.5,解得x,∴样本中位数的估计值为,平均数为77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10=87.25;(3)依题意良好的人数为40×0.4=16人,优秀的人数为40×0.6=24人优秀与良好的人数比为3:2,所以采用分层抽样的方法抽取的5人中有优秀3人,良好2人,记“从这5人中选2人至少有1人是优秀”为事件M,将考试成绩优秀的三名学生记为A,B,C,考试成绩良好的两名学生记为a,b,从这5人中任选2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab共10个基本事件,事件M含的情况是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9个,所以P(M)0.9【点睛】本题考查了频率分布直方图,考查了由频率分布直方图计算中位数和平均数,考查了古典概型的概率公式,属于中档题.18、(1);(2)【解析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入即可求得,把代入即可得到函数的解析式(2)根据x的范围进而可确定当的范围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域【详解】(1)由最低点为得A=2由x轴上相邻的两个交点之间的距离为得,即,由点在图象上的,,即,故又,故;(2),当,即时,取得最大值2;当,即时,取得最小值,故的值域为.19、(1);(2).【解析】(1)先根据的值和二者的平方关系联立求得的值,再把平方即可求出;(2)结合(1)求,的值,最后利用商数关系求得的值,代入即可得解【详解】(1)∵,∴,∴,∵,∴,,,∴,∴.(2)由,,解得,,∴∵,,∴【点睛】方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变式).20、(1),(2)①(),②28毫克/立方米【解析】(1)根据已知可得,一次喷洒4个单位的净化剂,浓度,分类讨论解出即可(2)①由题意可得(),②由于可化为,然后利用基本不等式可求出其最小值【详解】解:(1)根据已知可得,一次喷洒4个单位的净化剂,浓度,则当时,由,得,所以,当时,由,得,,得,所以,综上,,所以一次喷洒4个单位的净化剂,则净化时间约达小时,(2)①由题意可知,第一次喷洒2个单位的净化剂,3小时后的浓度为(毫克/立方米),所以第二次喷洒小时后空气中净化剂浓度为(),②(),,当且仅当,即时取等号,所以第二次喷洒小时时空气中净化剂浓度达到最小值28毫克/立方米【点睛】关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论