版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省北京师范大学东莞石竹附属学校2025届高二上数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的焦点坐标为()A. B.C. D.2.如图,P是椭圆第一象限上一点,A,B,C是椭圆与坐标轴的交点,O为坐标原点,过A作AN平行于直线BP交y轴于N,直线CP交x轴于M,直线BP交x轴于E.现有下列三个式子:①;②;③.其中为定值的所有编号是()A.①③ B.②③C.①② D.①②③3.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.4.设函数的图象为C,则下面结论中正确的是()A.函数的最小正周期是B.图象C关于点对称C.函数在区间上是增函数D.图象C可由函数的图象向右平移个单位得到5.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角6.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.7.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量8.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等9.给出如下四个命题正确的是()①方程表示的图形是圆;②椭圆的离心率;③抛物线的准线方程是;④双曲线的渐近线方程是A.③ B.①③C.①④ D.②③④10.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交11.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知命题p:若,则,那么命题p的否命题为______14.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____15.已知向量是直线l的一个方向向量,向量是平面的一个法向量,若直线平面,则实数m的值为______16.已知原命题为“若,则”,则它的逆否命题是__________(填写”真命题”或”假命题”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列满足,.(1)求数列的前8项和;(2)求数列的前项积.18.(12分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率19.(12分)已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标20.(12分)设等差数列的前项和为(1)求的通项公式;(2)求数列的前项和21.(12分)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.22.(10分)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B2、D【解析】根据斜率的公式,可以得到的值是定值,然后结合已知逐一判断即可.【详解】设,所以有,,因此,所以有,,,,,,故,,.故选:D【点睛】关键点睛:利用斜率公式得到之间的关系是解题的关键.3、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B4、B【解析】化简函数解析式,求解最小正周期,判断选项A,利用整体法求解函数的对称中心和单调递增区间,判断选项BC,再由图象变换法则判断选项D.【详解】,所以函数的最小正周期为,A错;令,得,所以函数图象关于点对称,B正确;由,得,所以函数在上为增函数,在上为减函数,C错;函数的图象向右平移个单位得,D错.故选:B5、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C6、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B7、C【解析】由样本的概念即知.【详解】由题意可知,这2500名城镇居民的寿命的全体是样本.8、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D9、A【解析】对选项①,根据圆一般方程求解即可判断①错误,对选项②,求出椭圆离心率即可判断②错误,对③,求出抛物线渐近线即可判断③正确,对④,求出双曲线渐近线方程即可判断④错误。【详解】对于①选项,,,故①错误;对于②选项,由题知,所以,所以离心率,故②错误;对于③选项,抛物线化为标准形式得抛物线,故准线方程是,故③正确;对于④选项,双曲线化为标准形式得,所以,焦点在轴上,故渐近线方程是,故④错误.故选:A10、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.11、C【解析】利用等差数列的定义和数列单调性的定义判断可得出结论.【详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.12、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、若,则【解析】直接利用否命题的定义,对原命题的条件与结论都否定即可得结果【详解】因为命题:若,则,所以否定条件与结论后,可得命题的否命题为若,则,故答案为若,则,【点睛】本题主要考查命题的否命题,意在考查对基础知识的掌握与应用,属于基础题14、【解析】由已知求得母线长,代入圆锥侧面积公式求解【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π故答案为2π【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.15、-2【解析】由已知可得,即,计算即可得出结果.【详解】因为是直线的一个方向向量,是平面的一个法向量,且直线平面,所以,所以,解得.故答案为:-2.16、真命题【解析】先判断原命题的真假,再由逆否命题与原命题是等价命题判断.【详解】因为命题“若,则”是真命题,且逆否命题与原命题是等价命题,所以它的逆否命题是真命题,故答案为:真命题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等比数列的公比为,由,求出公比,然后由等比数列前项和公式可得答案.(2)先得出通项公式,然后可得,由指数的运算性质,结合由等差数列前项和公式可得答案.小问1详解】设等比数列的公比为,,解得所以所以【小问2详解】18、(1)(2)或【解析】(1)根据题意可得,又因为且,解得,可得双曲线方程,进而可得的渐近线方程(2)设直线的方程为:,,,联立直线与双曲线方程,可得关于的一元二次方程,由韦达定理可得,,再由两点之间距离公式得,解得,进而由可求出,即可求得离心率.【小问1详解】∵点是双曲线的一个焦点,∴,又∵且,解得,∴双曲线方程为,∴的渐近线方程为:;小问2详解】设直线的方程为,且,,联立,可得,则,∴,即,∴,解得或,即由可得或,故双曲线的离心率或.19、(1);(2)答案见解析,直线过定点.【解析】(1)首先根据顶点为得到,再根据离心率为得到,从而得到椭圆C的方程.(2)设,,,与椭圆联立得到,利用直线BM与直线BN的斜率之积为和根系关系得到,从而得到直线恒过的定点.【详解】(1)一个顶点为,故,又,即,所以故椭圆的方程为(2)若直线l的斜率不存在,设,,此时,与题设矛盾,故直线l斜率必存在设,,,联立得,∴,∵,即∴,化为,解得或(舍去),即直线过定点【点睛】方法点睛:定点问题,一般从三个方法把握:(1)从特殊情况开始,求出定点,再证明定点、定值与变量无关;(2)直接推理,计算,在整个过程找到参数之间的关系,代入直线,得到定点.20、(1);(2).【解析】(1)根据等差数列前n项和求和公式求出首项和公差,进而求出通项公式;(2)结合(1)求出,再令得出数列的正数项和负数项,进而结合等差数列求和公式求得答案.【小问1详解】设等差数列的首项和公差分别为和,∴,解得:所以.【小问2详解】,所以.当;当,当,时,,当时,.综上:.21、(1)(2)证明见解析,定值为【解析】(1)由题意得,从而写出椭圆的方程即可;(2)易知直线斜率存在,令,,,,,将直线的方程代入椭圆的方程,消去得到关于的一元二次方程,再结合根系数的关系利用向量的坐标公式即可求得值,从而解决问题.【小问1详解】(1)由条件得,所以方程为【小问2详解】易知直线斜率存在,令,,,由,因为,所以,即-1-x1因为,所以,即-4-x1由①,由②将,代入上式,得22、(1)(,).(2)【解析】(1)根据条件列关于P点坐标得方程组,解得结果,(2)先根据点到直线距离公式结合条件解得点M坐标,再建立的函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村生活污水治理建议措施
- 圣诞节邀请函
- 服务调度岗评2024复习测试题
- 语文统编版(2024)一年级上册对韵歌 课件
- 广州上海牛津版英语七年级下-重点语法
- 万圣节“南瓜鬼混狂欢”主题浸式场景互动体验活动策划方案
- 《化学能与电能》说课稿4篇
- 5年中考3年模拟试卷初中道德与法治九年级下册02第2课时与世界深度互动
- 能源计量器具台账
- 人教版三年级下册音乐教案
- 第22课《梦回繁华》一等奖创新教学设计 部编版语文八年级上册
- 苏区精神专题教育课件
- 7以内的加减法练习题一(100题)
- 人教版九年级数学上册《图形的旋转》赛课一等奖创新课件
- 老城历史核心片区控制性详细规划
- 干细胞与组织工程间充质干细胞及其应用
- TOEFL单词-完整版单词表(Excl)
- 水泥混凝土地面工程施工组织设计方案
- 十五章昆虫的循环系统
- NB/T 10717-2021矿山压力监测系统通用技术条件
- GB/T 35686-2017火炸药危险环境用电气设备及安装
评论
0/150
提交评论