版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省宜昌市示范高中教学协作体高二数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.2.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率()A. B.C. D.3.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.4.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意学生约为300人D.样本中对方式一满意的学生为24人5.椭圆的两焦点之间的距离为A. B.C. D.6.已知空间四边形,其对角线、,、分别是边、的中点,点在线段上,且使,用向量,表示向量是A. B.C. D.7.过点且垂直于的直线方程为()A. B.C. D.8.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.9.已知双曲线,且三个数1,,9成等比数列,则下列结论正确的是()A.的焦距为 B.的渐近线方程为C.的离心率为 D.的虚轴长为10.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.911.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.1512.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点且与直线垂直的直线方程为______14.已知函数集合,若A中有且仅有4个元素,则满足条件的整数a的个数为______15.抛物线上一点到其焦点的距离为,则的值为______16.直线恒过定点,则定点坐标为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知平面直角坐标系上一动点满足:到点的距离是到点的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于直线对称,求的最大值.18.(12分)为庆祝中国共产党成立100周年,某校举行了党史知识竞赛,在必答题环节,甲、乙两位选手分别从3道选择题(1)甲至少抽到1道填空题(2)甲答对的题数比乙多的概率.19.(12分)如图,在正方体中,分别为,的中点(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值20.(12分)在等差数列中,,(1)求的通项公式;(2)设,求数列的前项和21.(12分)已知直线,以点为圆心的圆C与直线l相切(1)求圆C的标方程;(2)过点的直线交圆C于A,B两点,且,求的方程22.(10分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D2、A【解析】先根据前三项的系数成等差数列求,再根据古典概型概率公式求结果【详解】因为前三项的系数为,,,当时,为有理项,从而概率为.故选:A.3、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题4、B【解析】利用扇形统计图和条形统计图可求出结果【详解】选项A,样本容量为,该选项正确;选项B,根据题意得自主学习的满意率,错误;选项C,样本可以估计总体,但会有一定的误差,总体中对方式二满意人数约为,该选项正确;选项D,样本中对方式一满意人数为,该选项正确.故选:B【点睛】本题主要考查了命题真假的判断,考查扇形统计图和条形统计图等基础知识,考查运算求解能力,属于中档题5、C【解析】根据题意,由于椭圆的方程为,故可知长半轴的长为,那么可知两个焦点的坐标为,因此可知两焦点之间的距离为,故选C考点:椭圆的简单几何性质点评:解决的关键是将方程变为标准式,然后结合性质得到结论,属于基础题6、C【解析】根据所给的图形和一组基底,从起点出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论【详解】解:故选:【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程,属于基础题7、B【解析】求出直线l的斜率,再借助垂直关系的条件即可求解作答.【详解】直线的斜率为,而所求直线垂直于直线l,则所求直线斜率为,于是有:,即,所以所求直线方程为.故选:B8、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.9、D【解析】先求得的值,然后根据双曲线的知识对选项进行分析,从而确定正确答案.【详解】方程表示双曲线,则,成等比数列,则,所以双曲线方程为,所以,故双曲线的焦距为,A选项错误.渐近线方程为,B选项错误.离心率,C选项错误.虚轴长,D选项正确.故选:D10、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B11、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.12、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:14、32【解析】作出的图像,由时,不等式成立,所以,判断出符合条件的非零整数根只有三个,即等价于时,;时,;利用数形结合,进行求解.【详解】作出的图像如图所示:因为时,不等式成立,所以,符合条件的非零整数根只有三个.由可得:时,;时,;所以在y轴左侧,的图像都在的下方;在y轴右侧,的图像都在的上方;而,,,,.平移直线,由图像可知:当时,集合A中除了0只含有1,2,3,符合题意,此时整数a可以取:-23,-22,-21……-9.一共15个;当时,集合A中除了0含有1,-1,-2,符合题意.当时,集合A中除了0只含有-1,-2,-3,符合题意,此时整数a可以取:5,6,7……20一共16个.所以整数a的值一共有15+1+16=32(个).故答案为:32【点睛】分离参数法求零点个数的问题是转化为,分别做出和的图像,观察交点的个数即为零点的个数.用数形结合法解决零点问题常有以下几种类型:(1)零点个数:几个零点;(2)几个零点的和;(3)几个零点的积.15、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.16、【解析】解方程组可求得定点坐标.【详解】直线方程可化为,由,可得.故直线恒过定点.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)直接法求动点的轨迹方程,设点,列方程即可.(2)点关于直线对称的对称点问题,可以先求出点到直线的距离最值的两倍就是的距离,也可以求出点的轨迹方程直接求解的距离.【小问1详解】设,由题意,得:,化简得,所以点轨迹方程为【小问2详解】方法一:设,因为点与点关于点对称,则点坐标为,因为点在圆,即上运动,所以,所以点的轨迹方程为,所以两圆的圆心分别为,半径均为2,则.方法二:由可得:所以点的轨迹是以为圆心,2为半径的圆轨迹的圆心到直线的距离为:18、(1);(2).【解析】(1)把3道选择题(2)设,分别表示甲答对1道题,2道题的事件,,分别表示乙答对0道题,1道题的事件,分别求出它们的概率,甲答对的题数比乙多这个事件是,然后由相互独立的事件和互斥事件的概率公式计算【详解】解:(1)记3道选择题则试验的样本空间,.共有10个样本点,且每个样本点是等可能发生的,所以这是一个古典概型.记事件A=“甲至少抽到1道填空题,.所以,,.所以,.因此,甲至少抽到1道填空题(2)设,分别表示甲答对1道题,2道题的事件,分别表示乙答对0道题,1道题的事件,根据独立性假定,得,.,.记事件B=“甲答对的题数比乙多”,则,且,,两两互斥,与,与,与分别相互独立,所以..因此,甲答对的题数比乙多的概率为.19、(1)证明见解析;(2).【解析】(1)由正方体性质易得,根据线面平行的判定可得面、面,再由面面平行的判定证明结论;(2)建立空间直角坐标系,设正方体棱长为2,确定相关点的坐标,进而求两个半平面的法向量,应用空间向量夹角的坐标表示求二面角的余弦值【小问1详解】在正方体中,且,且,且,则四边形为平行四边形,即有,因为面,面,则平面,同理平面,又,面,则平面平面E.小问2详解】以点为坐标原点,,,所在直线分别为、、轴建立如图所示的空间直角坐标系,设正方体的棱长为,则,,所以,,设平面的法向量为,则,令,则由平面,则是平面的一个法向量设平面与平面夹角,,因此平面与平面所成锐二面角的余弦值为20、(1);(2).【解析】(1)根据等差数列的通项公式求解;(2)运用裂项相消法求数列的和.详解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【点睛】本题考查等差数列的通项公式和裂项相消法求数列的和.21、(1)(2)或【解析】(1)根据点到直线的距离公式求出半径,即可得到圆C的标方程;(2)根据弦长公式可求出圆心C到直线的距离,再根据点到直线的距离公式结合分类讨论思想即可求出【小问1详解】设圆C的半径为r,∵C与l相切,∴,∴圆C的标准方程为【小问2详解】由可得圆心C到直线的距离∴当的斜率不存在时,其方程为,此时圆心到的距离为3,符合条件;当的斜率存在时,设,圆心C到直线的距离,解得,此时的方程为,即综上,的方程为或22、(1)证明见解析(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 果品综合检测技术方案
- 土木工程实习工作周记(5篇)
- 初级中学校长开学典礼讲话
- 2017年吉林中考道德与法治真题及答案
- 高考数学复习解答题提高第一轮专题复习专题01空间几何体的外接球与内切球问题(典型题型归类训练)(学生版+解析)
- 语文统编版(2024)一年级上册7.两件宝 课件
- 《学前儿童卫生保健》 课件 1.2.3 幼儿循环系统的特点及卫生保健
- 新生儿脐带护理课件
- 方剂学简短课件
- 山东省淄博市桓台县(五四制)2023-2024学年七年级下学期期中考试数学试卷(含答案)
- 非遗课程进校园-剪纸课程的实践与探究 论文
- 修理厂机修承包合同
- 小数乘整数(说课 上课 课件)
- 阳光心理健康人生小学生心理健康主题班会课件
- led大屏施工方案
- 道德与法治课程2022课标解读
- 肉牛的养殖技术课件
- 水土保持监理实施细则
- 原发性醛固酮增多症护理查房
- 【北汽蓝谷新能源汽车公司税收筹划方案设计(5000字论文)】
- 成为公关高手:我在奥美、联想、美团的15年公关经验总结
评论
0/150
提交评论