2025届湖南省湘西州数学高二上期末达标检测试题含解析_第1页
2025届湖南省湘西州数学高二上期末达标检测试题含解析_第2页
2025届湖南省湘西州数学高二上期末达标检测试题含解析_第3页
2025届湖南省湘西州数学高二上期末达标检测试题含解析_第4页
2025届湖南省湘西州数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省湘西州数学高二上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.倾斜角为120°,在x轴上截距为-1的直线方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=02.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.3.设,则的一个必要不充分条件为()A. B.C. D.4.直线的倾斜角为()A. B.C. D.5.设命题,则为()A. B.C. D.6.已知抛物线的焦点为F,直线l经过点F交抛物线C于A,B两点,交抛物浅C的准线于点P,若,则为()A.2 B.3C.4 D.67.已知抛物线C:的焦点为F,过点P(-1,0)且斜率为的直线l与抛物线C相交于A,B两点,则()A. B.14C. D.158.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.9.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.4810.函数y=ln(1﹣x)的图象大致为()A. B.C D.11.下列语句中是命题的是A.周期函数的和是周期函数吗? B.C. D.梯形是不是平面图形呢?12.若等差数列,其前n项和为,,,则()A.10 B.12C.14 D.16二、填空题:本题共4小题,每小题5分,共20分。13.设数列的前n项和为,若,且是等差数列.则的值为__________14.数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图).给出下列三个结论:其中,所有正确结论的序号是____________①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围城的“心形”区域的面积小于315.在空间直角坐标系O-xyz中,平面OAB的一个法向量为=(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距离d等于__________________16.已知抛物线方程为,则其焦点坐标为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率18.(12分)已知函数(1)当时,求函数的极值;(2)当时,若恒成立,求实数a的取值范围19.(12分)已知数列的前n项和为,,且.(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个公差为的等差数列,求证:.20.(12分)已知,,分别是锐角内角,,的对边,,.(1)求的值;(2)若的面积为,求的值.21.(12分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且______(1)求数列的通项公式;(2)若数列的前n项和为,令,求数列的前n项和22.(10分)如图,已知椭圆的左顶点,过右焦点的直线与椭圆相交于两点,当直线轴时,.(1)求椭圆的方程;(2)记,的面积分别为,求的取值范围;(3)若的重心在圆上,求直线的斜率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由倾斜角求出斜率,写出斜截式方程,再化为一般式【详解】由于倾斜角为120°,故斜率k=-.又直线过点(-1,0),所以方程为y=-(x+1),即x+y+=0.故选:D.【点睛】本题考查直线方程的斜截式,属于基础题2、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.3、C【解析】利用必要条件和充分条件的定义判断.【详解】A选项:,,,所以是的充分不必要条件,A错误;B选项:,,所以是的非充分非必要条件,B错误;C选项:,,,所以是必要不充分条件,C正确;D选项:,,,所以是的非充分非必要条件,D错误.故选:C.4、D【解析】若直线倾斜角为,由题设有,结合即可得倾斜角的大小.【详解】由直线方程,若其倾斜角为,则,而,∴.故选:D5、D【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题是全称量词命题,所以其否定是存在量词命题,即,故选:D6、C【解析】由题意可知设,由可得,可求得,,根据模长公式计算即可得出结果.【详解】由题意可知,准线方程为,设,可知,,解得:,代入到抛物线方程可得:.,故选:C7、C【解析】设A、B两点的坐标分别为,,根据抛物线的定义求出,然后将直线的方程代入抛物线方程并化简,进而结合根与系数的关系求得答案.【详解】设A、B两点坐标分别为,,直线的方程为,抛物线的准线方程为:,由抛物线定义可知:.联立方程,消去y后整理为,可得,,.故选:C.8、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.9、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D10、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.11、B【解析】命题是能判断真假的语句,疑问句不是命题,易知为命题,故选B12、B【解析】由等差数列前项和的性质计算即可.【详解】由等差数列前项和的性质可得成等差数列,,即,得.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、52【解析】根据给定条件求出,再求出数列的通项即可计算作答.【详解】依题意,因是等差数列,则其公差,于是得,,当时,,而满足上式,因此,,所以.故答案为:5214、①②【解析】根据题意,先判断曲线关于轴对称,由基本不等式的性质对方程变形,得到,可判定①正确;当时,,得到曲线右侧部分的点到原点的距离都不超过,再根据曲线的对称性,可判定②正确;由轴的上方,图形的面积大于四点围成的矩形的面积,在轴的下方,图形的面积大于三点围成的三角形的面积,可判断③不正确.【详解】根据题意,曲线,用替换曲线方程中的,方程不变,所以曲线关于轴对称,对于①中,当时,,即为,可得,所以曲线经过点,再根据对称性可知,曲线还经过点,故曲线恰好经过6个整点,所以①正确;对于②中,由①可知,当时,,即曲线右侧部分的点到原点的距离都不超过,再根据曲线的对称性可知,曲线上任意一点到原点的距离都不超过,所以②正确;对于③中,因为在轴的上方,图形的面积大于四点围成的矩形的面积,在轴的下方,图形的面积大于三点围成的三角形的面积,所以曲线所围城的“心形”区域的面积大于3,所以③不正确.故选:①②15、2【解析】O是平面OAB上一个点,设点P到平面OAB的距离为d,则d=∵=(-1,3,2).(2,-2,1)=-6,∴d==2即点P到平面OAB的距离为2考点:空间向量在立体几何中的运用16、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率为;【小问2详解】两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数时,用坐标记为,,,,,,,,,,,,,,,,共包括16个基本事件,故两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数有的概率为.18、(1)极大值;极小值(2)【解析】(1)利用导数来求得的极大值和极小值.(2)由不等式分离常数,通过构造函数法,结合导数来求得的取值范围.【小问1详解】当时,,,令,可得或2所以在区间递增;在区间递减.故当时.函数有极大值,故当时,函数有极小值;【小问2详解】由,有,可化为,令,有,令,有,令,可得,可得函数的增区间为,减区间为,有,可知,有函数为减函数,有,故当时,若恒成立,则实数a的取值范围为【点睛】求解不等式恒成立问题,可利用分离常数法,结合导数求最值来求解.在利用导数研究函数的过程中,如果一阶导数无法解决,可考虑利用二阶导数来进行求解.19、(1)(2)证明见解析【解析】(1)根据作差即可得到是以为首项,为公比的等比数列,从而得到数列的通项公式;(2)由(1)可知,,根据等差数列的通项公式得到,即可得到,再令,利用错位相减法求出,即可得证;【小问1详解】解:因为,且,当时,则,所以,当时,,则,即,所以是以为首项,为公比的等比数列,所以;【小问2详解】解:由(1)可知,,因为,所以,所以,令,则,所以,所以,即,所以,即;20、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根据题意得到,再由关于角的余弦定理和整理化简得,再由的面积,即可求出的值.【小问1详解】由及正弦定理可得.【小问2详解】由锐角中得,根据余弦定理可得,代入得,整理得,即,解得,,解得.21、(1);(2).【解析】(1)选择不同的条件,再通过构造数列以及累乘法即可求得对应情况下的通项公式;(2)根据(1)中所求,求得,再利用错位相减法求其前项和即可.【小问1详解】选①:∵,即,∴.即,∴数列是常数列,∴,故;选②:∵,∴时,,则,即∴,∴;当时,也满足,∴;选③:得,所以数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论