版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省滦州市2025届高一上数学期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.2.为了得到函数的图像,只需把函数的图像上()A.各点的横坐标缩短到原来的倍,再向左平移个单位B.各点的横坐标缩短到原来的倍,再向左平移个单位C.各点的横坐标缩短到原来的2倍,再向左平移个单位D.各点的横坐标缩短到原来的2倍,再向左平移个单位3.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.手机屏幕面积与手机前面板面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在0~1之间.若设计师将某款手机的屏幕面积和手机前面板面积同时增加相同的数量,升级为一款新手机,则该款手机的“屏占比”和升级前相比()A.不变 B.变小C.变大 D.变化不确定5.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.26.已知是锐角三角形,,,则A. B.C. D.与的大小不能确定7.若函数的图像向左平移个单位得到的图像,则A. B.C. D.8.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.9.向量“,不共线”是“|+|<||+||”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知函数在区间上单调递增,且在区间上只取得一次最大值,则取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________12.已知直线:,直线:,若,则__________13.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________14.已知角的终边过点,则______15.若,则实数的值为______.16.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,第三象限角,.求:(1)的值;(2)的值18.已知直线,直线经过点,且(1)求直线的方程;(2)记与轴相交于点,与轴相交于点,与相交于点,求的面积19.某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为am的篱笆墙围成一个鸡圈,篱笆的两个端点A,B分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形;方案乙:如图2,围成区域为矩形;方案丙:如图3,围成区域为梯形,且.(1)在方案乙、丙中,设,分别用x表示围成区域的面积,;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由.20.已知函数,且求函数的定义域;求满足实数x的取值范围21.已知函数,(,,),且的图象相邻两个对称轴之间的距离为,且任意,都有恒成立.(1)求的最小正周期与对称中心;(2)若对任意,均有恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题2、B【解析】各点的横坐标缩短到原来的倍,变为,再向左平移个单位,得到.3、D【解析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D4、C【解析】做差法比较与的大小即可得出结论.【详解】设升级前的“屏占比”为,升级后的“屏占比”为(,).因为,所以升级后手机“屏占比”和升级前相比变大,故选:C5、A【解析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.6、A【解析】分析:利用作差法,根据“拆角”技巧,由三角函数的性质可得.详解:将,代入,,可得,,由于是锐角三角形,所以,,,,所以,,综上,知.故选A点睛:本题主要考查三角函数的性质,两角和与差的三角函数以及作差法比较大小,意在考查学生灵活运用所学知识解答问题的能力,属于中档题.解答本题的关键是运用好“拆角”技巧.7、A【解析】函数的图象向左平移个单位,得到的图象对应的函数为:本题选择A选项.8、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B9、A【解析】利用向量的线性运算的几何表示及充分条件,必要条件的概念即得.【详解】当向量“,不共线”时,由向量三角形的性质可得“|+|<||+||”成立,即充分性成立,当“,方向相反”时,满足“|+|<||+||”,但此时两个向量共线,即必要性不成立,故向量“,不共线”是“|+|<||+||”的充分不必要条件.故选:A.10、C【解析】根据三角恒等变换化简,结合函数单调区间和取得最值的情况,利用整体法即可求得参数的范围.【详解】因为,因为在区间上单调递增,由,则,则,解得,即;当时,,要使得该函数取得一次最大值,故只需,解得;综上所述,的取值范围为.故选:C.第II卷二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式:故答案为.12、1【解析】根据两直线垂直时,系数间满足的关系列方程即可求解.【详解】由题意可得:,解得:故答案为:【点睛】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.13、【解析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:14、【解析】根据三角函数的定义求出r即可.【详解】角的终边过点,,则,故答案为【点睛】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.15、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:16、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用给定条件结合同角公式求,再利用二倍角正弦公式计算即得;(2)由条件求出,由(1)求出,再借助和角的余弦公式计算即得.【小问1详解】因为是第三象限角,,则所以,【小问2详解】因为,,则,又,所以18、(1);(2)【解析】(1)根据两条直线垂直的斜率关系可得直线的斜率,代入求得截距,即可求得直线的方程.(2)根据题意分别求得的坐标,可得的长,由的纵坐标即可求得的面积【详解】(1)由题意,则两条直线的斜率之积为即直线的斜率为因为,所以可设将代入上式,解得即(2)在直线中,令,得,即在直线:中,令,得,即解方程组,得,,即则底边的长为,边上的高为故【点睛】本题考查了直线与直线垂直的斜率关系,直线与轴交点坐标,直线的交点坐标求法,属于基础题.19、(1),;,.(2)农户应该选择方案三,理由见解析.【解析】(1)根据矩形面积与梯形的面积公式表示即可得答案;(2)先根据基本不等式研究方案甲得面积的最大值为,再根据二次函数的性质结合(1)研究,的最大值即可得答案.【小问1详解】解:对于方案乙,当时,,所以矩形的面积,;对于方案丙,当时,,由于所以,所以梯形面积为,.【小问2详解】解:对于方案甲,设,则,所以三角形的面积为,当且仅当时等号成立,故方案甲的鸡圈面积最大值为.对于方案乙,由(1)得,,当且仅当时取得最大值.故方案乙的鸡圈面积最大值为;对于方案丙,,.当且仅当时取得最大值.故方案丙的鸡圈面积最大值为;由于所以农户应该选择方案丙,此时鸡圈面积最大.20、(1);(2)见解析.【解析】由题意可得,,解不等式可求;由已知可得,结合a的范围,进行分类讨论求解x的范围【详解】(1)由题意可得,,解可得,,函数的定义域为,由,可得,时,,解可得,,时,,解可得,【点睛】本题主要考查了对数函数的定义域及利用对数函数单调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题21、(1);,;(2).【解析】(1)由题意可知,再由求出,由恒成立,可得,即,求出,根据正弦函数的对称中心,,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度交通工具租赁合同with保险与维护服务
- 2024年度房产买卖合同:关于期房项目的详细交易条件
- 楚雄行业发展研究报告
- 档案馆员培训课程设计
- 2024年机器设备购买与维护合同
- 档口食堂招商方案
- 2024年度建筑施工合同:住宅小区建设
- 大坝框格梁护施工方案
- 舞台设备租赁合同范文202
- 垫江中式别墅施工方案
- 人教版语文八年级上册( 部编版)24 《周亚夫军细柳》课件
- 触电急救及防火防雷设备使用操作
- 第三章 信息系统的网络组建- 复习课件 2021-2022学年粤教版(2019)高中信息技术必修2
- 佛七精进念佛容易着魔请看祖师开示及个人感悟
- GB/T 19812.3-2017塑料节水灌溉器材第3部分:内镶式滴灌管及滴灌带
- GB/T 18852-2020无损检测超声检测测量接触探头声束特性的参考试块和方法
- 幼儿园中班科学活动教案《奇妙的感官》
- Yes-or-No-questions-一般疑问课件
- 饲料厂三级安全教育培训试卷试题(生产操作工)
- 环境保护相关知识培训专题培训课件
- 大坝坝基开挖与支护施工方案清楚明了
评论
0/150
提交评论