湖北省西南三校合作体2025届高二数学第一学期期末检测模拟试题含解析_第1页
湖北省西南三校合作体2025届高二数学第一学期期末检测模拟试题含解析_第2页
湖北省西南三校合作体2025届高二数学第一学期期末检测模拟试题含解析_第3页
湖北省西南三校合作体2025届高二数学第一学期期末检测模拟试题含解析_第4页
湖北省西南三校合作体2025届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省西南三校合作体2025届高二数学第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆2.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟3.实数且,,则连接,两点的直线与圆C:的位置关系是()A.相离 B.相切C.相交 D.不能确定4.空气质量指数大小分为五级指数越大说明污染的情况越严重,对人体危害越大,指数范围在:,,,,分别对应“优”、“良”、“轻中度污染”、“中度重污染”、“重污染”五个等级,如图是某市连续14天的空气质量指数趋势图,下面说法错误的是().A.这14天中有4天空气质量指数为“良”B.从2日到5日空气质量越来越差C.这14天中空气质量的中位数是103D.连续三天中空气质量指数方差最小是9日到11日5.若,,,则a,b,c与1的大小关系是()A. B.C. D.6.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2C. D.7.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.8.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直9.函数在处的切线方程为()A. B.C. D.10.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.11.已知点,,直线与线段相交,则实数的取值范围是()A.或 B.或C. D.12.已知两条平行直线:与:间的距离为3,则()A.25或-5 B.25C.5 D.21或-9二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的右顶点为A,右焦点为F,过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则的面积为__________14.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如下图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD的边长为4,取正方形ABCD各边的四等分点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的四等分点M,N,P,Q,作第3个正方形MNPQ,依此方法一直继续下去,就可以得到阴影部分的图案.如图(2)阴影部分,设直角三角形AEH面积为,直角三角形EMQ面积为,后续各直角三角形面积依次为,…,,若数列的前n项和恒成立,则实数的取值范围为______.15.若,满足约束条件,则的最小值为__________16.已知方程表示焦点在x轴上的双曲线,则m的取值范围为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.18.(12分)已知P,Q的坐标分别为,,直线PM,QM相交于点M,且它们的斜率之积是.设点M的轨迹为曲线C.(1)求曲线的方程;(2)设为坐标原点,圆的半径为1,直线:与圆相切,且与曲线交于不同的两点A,B.当,且满足时,求面积的取值范围.19.(12分)如图,在四棱柱中,,,,四边形为菱形,在平面ABCD内的射影O恰好为AD的中点,M为AB的中点.(1)求证:平面;(2)求平面与平面夹角的余弦值.20.(12分)为了解某市家庭用电量的情况,该市统计局调查了若干户居民去年一年的月均用电量(单位:),得到如图所示的频率分布直方图.(1)估计月均用电量的众数;(2)求a的值;(3)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,月均用电量不高于平均数的为第一档,高于平均数的为第二档,已知某户居民月均用电量为,请问该户居民应该按那一档电价收费,说明理由.21.(12分)甲乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响(1)求甲乙各投球一次,比赛结束的概率;(2)求甲获胜的概率22.(10分)如图,在四棱锥中,底面为正方形,,直线垂直于平面分别为的中点,直线与相交于点.(1)证明:与不垂直;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A2、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.3、B【解析】由题意知,m,n是方程的根,再根据两点式求出直线方程,利用圆心到直线的距离与半径之间的关系即可求解.【详解】由题意知,m,n是方程的根,,,过,两点的直线方程为:,圆心到直线的距离为:,故直线和圆相切,故选:B【点睛】本题考查了直线与圆的位置关系,考查了计算求解能力,属于基础题.4、C【解析】根据题图分析数据,对选项逐一判断【详解】对于A,14天中有1,3,12,13共4日空气质量指数为“良”,故A正确对于B,从2日到5日空气质量指数越来越高,故空气质量越来越差,故B正确对于C,14个数据中位数为:,故C错误对于D,观察折线图可知D正确故选:C5、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.6、D【解析】根据给定条件求出抛物线的顶点,结合抛物线的性质求出p值即可计算作答.【详解】依题意,抛物线的顶点坐标为,则抛物线的顶点到焦点的距离为,p>0,解得,于是得抛物线的方程为,由得,,即抛物线与轴的交点坐标为,因此,,所以矿石落点的最远处到点的距离为.故选:D7、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.8、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C9、C【解析】利用导数的几何意义即可求切线方程﹒【详解】,,,,在处的切线为:,即﹒故选:C﹒10、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B11、B【解析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【详解】由可得:,由可得,所以直线:过定点,作出图象如图所示:,,若直线与线段相交,则或,所以实数的取值范围是或,故选:B12、A【解析】根据平行直线的性质,结合平行线间距离公式进行求解即可.【详解】因为直线:与:平行,所以有,因为两条平行直线:与:间距离为3,所以,或,当时,;当时,,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由平行线的性质求出斜率,由点斜式求出直线方程,然后求出交点坐标,由三角形面积公式可得结果.【详解】双曲线的右顶点,右焦点,,所以渐近线方程为,不妨设直线FB的方程为,将代入双曲线方程整理,得,解得,,所以,所以故答案为:.14、或【解析】先求正方形边长的规律,再求三角形面积的规律,从而就可以求和了,再解不等式即可求解.【详解】由题意,由外到内依次各正方形的边长分别为,则,,……,,于是数列是以4为首项,为公比的等比数列,则.由题意可得:,即……,于是.,故解得或.故答案为:或15、【解析】作出线性约束条件的可行域,再利用截距的几何意义求最小值;【详解】约束条件的可行域,如图所示:目标函数在点取得最小值,即.故答案为:16、【解析】根据焦点在轴的双曲线的标准方程的特征可得答案.【详解】因为双曲线的焦点在轴上,则,解得.所以的取值范围为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)利用线面垂直的判定定理及性质即证;(2)利用坐标法,结合条件可求,然后利用体积公式即求.【小问1详解】,是的中点,,平面,平面,,又,平面,平面,;【小问2详解】,,,取的中点,连接,则,平面,以为坐标原点,分别以、、所在直线为、、轴建立空间直角坐标系,设,则,,,,,,,,设平面的一个法向量为,由,取,得;设平面的一个法向量为,由,取,得,∵二面角的大小为,,解得,,则三棱锥的体积.18、(1)(2)【解析】【小问1详解】设点,则,整理得曲线的方程:【小问2详解】因为圆的半径为1,直线:与圆相切,则,,设,将代入得,,,,,所以,,因为,令,在上单调减,,所以19、(1)证明见解析(2)【解析】(1)先证明,,即可证明平面;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】因为O为在平面ABCD内的射影,所以平面ABCD,因为平面ABCD,所以.如图,连接BD,在中,.设CD的中点为P,连接BP,因为,,,所以,且,则.因为,所以,易知,所以.因为平面,平面,,所以平面.【小问2详解】由(1)知平面ABCD,所以可以点O为坐标原点,以OA,,所在直线分别为x,z,以平面ABCD内过点O且垂直于OA的直线为y轴,建立如图所示的空间直角坐标系,则,,,,,所以,,,,设平面的法向量为,,,则可取平面的一个法向量为.设平面的法向量为,,,则令,得平面的一个法向量为.设平面与平面的平面角为,由法向量的方向可知与法向量的夹角大小相等,所以,所以平面与平面夹角的余弦值为.20、(1)175(2)0.004(3)该居民该户居民应该按第二档电价收费,理由见解析【解析】(1)在区间对应的小矩形最高,由此能求出众数;(2)利用各个区间的频率之和为1,即可求出值;(3)求出月均用电量的平均数的估计值即可判断.【小问1详解】由题知,月均用电量在区间内的居民最多,可以将这个区间的中点175作为众数的估计值,所以众数的估计值为175.【小问2详解】由题知:,解得则的值为0.004.【小问3详解】平均数的估计值为:,则月均用电量的平均数的估计值为,又∵∴该居民该户居民应该按第二档电价收费.21、(1)(2)【解析】(1)设事件“甲在第次投篮投中”,设事件“乙在第次投篮投中”,记“甲乙各投球一次,比赛结束”为事件,则,利用独立事件和互斥事件的概率公式,即得解(2)记“甲获胜”为事件,由题意,根据概率的加法公式和独立事件的概率公式,即得解【小问1详解】设事件“甲在第次投篮投中”,其中设事件“乙在第次投篮投中”,其中则,,其中记“甲乙各投球一次,比赛结束”为事件,,事件与事件相互独立根据事件独立性定义得:甲乙各投球一次,比赛结束的概率为【小问2详解】记“甲获胜”为事件,事件、事件、事件彼此互斥根据概率加法公式和事件独立性定义得:甲获胜的概率为22、(1)证明见解析;(2).【解析】(1)以点为坐标原点,、、所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论