版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市清华大学附中2025届高二数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,则边的长等于()A. B.C. D.22.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.3.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.4.已知直线l:,则下列结论正确的是()A.直线l的倾斜角是B.直线l在x轴上的截距为1C.若直线m:,则D.过与直线l平行的直线方程是5.设P是双曲线上的点,若,是双曲线的两个焦点,则()A.4 B.5C.8 D.106.抛物线上的一点到其焦点的距离等于()A. B.C. D.7.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列8.过两点和的直线的斜率为()A. B.C. D.9.已知,则下列不等式一定成立的是()A. B.C. D.10.用数学归纳法证明时,第一步应验证不等式()A. B.C. D.11.以轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是()A. B.C.或 D.或12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为()A.99 B.131C.139 D.141二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一项填空.)14.已知函数定义域为,值域为,则______15.已知函数,则的值为______16.直线的一个法向量________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围18.(12分)如图,已知三棱锥的侧棱,,两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求点到面的距离.(3)求二面角的平面角的正切值.19.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点20.(12分)已知公差不为的等差数列的首项,且、、成等比数列.(1)求数列的通项公式;(2)设,,是数列的前项和,求使成立的最大的正整数.21.(12分)中国男子篮球职业联赛(ChineseBasketballAssociation),简称中职篮(CBA),由中国国家体育总局篮球运动管理中心举办的男子职业篮球赛事,旨在全面提高中国篮球运动水平,其中诞生了姚明、王治郅、易建联、朱芳雨等球星.该比赛分为常规赛和季后赛.由于新冠疫情关系,某年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8球队进入季后赛.下表是A队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中数据,完成下面列联表:A队胜A队负合计主场5客场20合计60(2)根据(1)中列联表,判断是否有90%的把握认为比赛的“主客场”与“胜负”之间有关?附:.0.1000.0500.025k2.7063.8415.02422.(10分)如图,四棱锥中,,.(1)证明:平面;(2)在线段上是否存在一点,使直线与平面所成角的正弦值等于?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由余弦定理求解【详解】由余弦定理,得,即,解得(负值舍去)故选:A2、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.3、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B4、D【解析】A.将直线方程的一般式化为斜截式可得;B.令y=0可得;C.求出直线m斜率即可判断;D.设要求直线的方程为,将代入即可.【详解】根据题意,依次分析选项:对于A,直线l:,即,其斜率,则倾斜角是,A错误;对于B,直线l:,令y=0,可得,l在x轴上的截距为,B错误;对于C,直线m:,其斜率,,故直线m与直线l不垂直,C错误;对于D,设要求直线的方程为,将代入,可得t=0,即要求直线为,D正确;故选:D5、C【解析】根据双曲线的定义可得:,结合双曲线的方程可得答案.【详解】由双曲线可得根据双曲线的定义可得:故选:C6、C【解析】由点的坐标求得参数,再由焦半径公式得结论【详解】由题意,解得,所以,故选:C7、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.8、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D9、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B10、B【解析】取即可得到第一步应验证不等式.【详解】由题意得,当时,不等式为故选:B11、C【解析】由分焦点在轴的正半轴上和焦点在轴的负半轴上,两种情况讨论设出方程,根据,即可求解.【详解】由题意,抛物线的顶点在原点,以轴为对称轴,且通经长为8,当抛物线的焦点在轴的正半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为;当抛物线的焦点在轴的负半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为,所以所求抛物线的方程为.故选:C.12、D【解析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:由图可得,则.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、充分不必要【解析】由不等式的性质可知,由得,反之代入进行验证,然后根据充分性与必要性的定义进行判断,即可得出所要的答案【详解】解:由不等式的性质可知,由得,故“”成立可推出“”,而,当,则,所以“”不能保证“”,故“”是“”成立的充分不必要条件.故答案为:充分不必要【点睛】本题考查充分条件与必要条件的判断,结合不等式的性质,属于较简单题型14、3【解析】根据定义域和值域,结合余弦函数的图像与性质即可求得的值,进而得解.【详解】因为,由余弦函数的图像与性质可得,则,由值域为可得,所以,故答案为:3.【点睛】本题考查了余弦函数图像与性质的简单应用,属于基础题.15、【解析】先求出的导函数,然后将代入可得答案.【详解】,所以故答案为:16、(答案不唯一)【解析】根据给定直线方程求出其方向向量,再由法向量意义求解作答.【详解】直线的方向向量为,而,所以直线的一个法向量.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是18、(1);(2);(3).【解析】(1)首先以为原点,、、分别为、、轴建立空间直角坐标系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量为,先求,再求二面角的正切值.【详解】(1)以为原点,、、分别为、、轴建立空间直角坐标系.则有、、、.,,所以异面直线与所成角的余弦为(2)设平面的法向量为,则知:;知取,又,点到面的距离所以点到面的距离为.(3)(2)中已求平面的法向量,设平面的法向量为∵;∴取..设二面角的平面角为,则.【点睛】本题考查空间直角坐标系求解空间角和点到平面的距离,重点考查计算能力,属于中档题型.19、(1);(2);(3).【解析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为直径圆经过原点知,..经检验,满足,所以.【小问3详解】由题意可得圆的方程为,设,由得.①.当时,,直线的方程为.直线过椭圆的右焦点.当时,直线的斜率为且过,②把①代入②中得.故直线过椭圆的右焦点.综上所述,直线过椭圆的右焦点.20、(1)(2)【解析】(1)设等差数列的公差为,根据已知条件可得出关于实数的等式,结合可求得的值,由此可得出数列的通项公式;(2)利用裂项求和法求出,解不等式即可得出结果.【小问1详解】解:设等差数列公差为,则,由题意可得,即,整理得,,解得,故.【小问2详解】解:,所以,,由得,可得,所以,满足成立的最大的正整数的值为.21、(1)填表见解析(2)没有【解析】(1)由A队在常规赛60场比赛中的比赛结果记录表可得答案;(2)根据(1)中的列联表,代入可得答案.【小问1详解】(1)根据表格信息得到列联表:A队胜A队负合计主场25530客场201030合计451560【小问2详解】所以没有90%的把握认为比赛的“主客场”与“胜负”之间有关.22、(1)详解解析;(2)存在.【解析】(1)利用勾股定理证得,结合线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村产业融合项目目标分析
- 果品综合检测风险应对策略
- 2024 年【数字素养】养考试题库及答案 4
- 高中语文文言文阅读典籍分类专训选择性必修中册 过秦论(新教材课内必刷)
- 高中语法-句子结构和成分
- 高中英语语法系统讲解之七非谓语动词
- 《学前儿童卫生保健》 课件 1.2.1 幼儿运动系统的特点及卫生保健
- 第4章 图象分割课件
- 吹泡泡课件教学课件
- 新生儿期临床的主要问题课件
- 写作方法的学习-情景交融法
- 人教部编版语文七年级上册第二单元作业设计6
- 急性脑血管病的护理查房
- 河北高考英语必考单词汇总
- 肿瘤科饮食健康宣教课件
- 运输行业食品安全培训
- 用字母表示数课件-西师版五年级数学下册
- 课堂互动游戏快乐切水果
- 烟花爆竹零售店点安全技术规范
- 防雷基础知识培训
- 玫瑰花展策划方案
评论
0/150
提交评论