版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆库尔勒第二师华山中学数学高一上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线l过点,且与以为端点的线段相交,则直线l的斜率的取值范围是()A. B.C. D.2.已知圆与圆相离,则的取值范围()A. B.C. D.3.已知,则A.-2 B.-1C. D.24.已知,若方程有四个不同的实数根,,,,则的取值范围是()A.(3,4) B.(2,4)C.[0,4) D.[3,4)5.函数的单调减区间为()A. B.C. D.6.已知函数是定义在R上的偶函数,若对于任意不等实数,,,不等式恒成立,则不等式的解集为()A. B.C. D.7.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为A B.C. D.8.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.119.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.1010.有一组实验数据如下表所示:1.93.04.0516.11.54.07.512.018.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______.12.已知平面,,直线,若,,则直线与平面的位置关系为______.13.命题“”的否定是__________14.已知,,则的值为15.已知,,则的值为_______.16.幂函数的图象过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)写出函数f(x)的最小正周期T及ω、φ的值;(2)求函数f(x)在区间上的最大值与最小值.18.已知,且为第二象限角(1)求的值;(2)求值.19.已知,且函数.(1)判断的奇偶性,并证明你的结论;(2)设,对任意,总存在,使得g(x1)=h(x2)成立,求实数c的取值范围.在以下①,②两个条件中,选择一个条件,将上面的题目补充完整,先求出a,b的值,并解答本题.①函数在定义域上为偶函数;②函数在上的值域为;20.设函数.(1)当时,求函数的最小值;(2)若函数的零点都在区间内,求的取值范围.21.已知集合(1)当时,求;(2)若“”是“”充分条件,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】作出图形,并将直线l绕着点M进行旋转,使其与线段PQ相交,进而得到l斜率的取值范围.【详解】∵直线l过点,且与以,为端点的线段相交,如图所示:∴所求直线l的斜率k满足或,,则或,∴,故选:D2、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法3、B【解析】,,则,故选B.4、D【解析】利用数形结合可得,结合条件可得,,,且,再利用二次函数的性质即得.【详解】由方程有四个不同的实数根,得函数的图象与直线有四个不同的交点,分别作出函数的图象与直线由函数的图象可知,当两图象有四个不同的交点时,设与交点的横坐标为,,设,则,,由得,所以,即设与的交点的横坐标为,,设,则,,且,所以,则故选:D.5、A【解析】求出的范围,函数的单调减区间为的增区间,即可得到答案.【详解】由可得或函数的单调减区间为的增区间故选:A6、C【解析】由条件对于任意不等实数,,不等式恒成立可得函数在上为减函数,利用函数性质化简不等式求其解.【详解】∵函数是定义在R上的偶函数,∴,∴不等式可化为∵对于任意不等实数,,不等式恒成立,∴函数在上为减函数,又,∴,∴,∴不等式的解集为故选:C.7、A【解析】利用弧长公式、扇形的面积计算公式即可得出【详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题8、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C9、A【解析】先求出高一学生的人数,再利用抽样比,即可得到答案;【详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A10、B【解析】先画出实验数据的散点图,结合各选项中的函数特征可得的选项.【详解】实验数据的散点图如图所示:4个选项中的函数,只有B符合,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用商数关系,由得到代入求解.【详解】方法一:,则.方法二:分子分母同除,得.故答案为:【点睛】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.12、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.13、【解析】特称命题的否定.【详解】命题“”的否定是【点睛】本题考查特称命题的否定,属于基础题;对于含有量词的命题的否定要注意两点:一是要改换量词,即把全称(特称)量词改为特称(全称)量词,二是注意要把命题进行否定.14、3【解析】,故答案为3.15、-.【解析】将和分别平方计算可得.【详解】∵,∴,∴,∴,又∵,∴,∴,故答案为:-.【点晴】此题考同脚三角函数基本关系式应用,属于简单题.16、【解析】将点的坐标代入解析式可解得结果.【详解】因为幂函数的图象过点,所以,解得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)最小值为,最大值为1.【解析】(1)由函数的部分图象求解析式,由周期求出,代入求出的值,可得函数的解析式;(2)由以上可得,,再利用正弦函数的定义域和值域,求得函数的最值.【详解】(1)根据函数的部分图象,可得,解得,,将代入可得,解得;(2)由以上可得,,,,,当时,即,函数取得最小值为.当时,即,函数取得最大值为1.【点睛】本题考查三角函数部分图象求解析式,考查三角函数给定区间的最值,属于基础题.18、(1)cos,(2)【解析】(1)通过三角恒等式先求,再求即可;(2)先通过诱导公式进行化简,再将,的值代入即可得结果.【小问1详解】因为sin=,所以,且是第二象限角,所以cos=,从而【小问2详解】原式=19、(1)奇函数,证明见解析;(2).【解析】若选择①利用偶函数的性质求,若选择条件②,利用函数的单调性,求函数的值域,比较后得到值;(1)由①或②得,利用奇偶函数的定义判断;(2)根据条件转化为的值域是的值域的子集,求实数的取值范围.【详解】若选择①由,在上是偶函数,则,且,所以a=2,b=0;②当a>1时,在上单调递增,则有,解得a=2,b=0;由①或②得,(1)为奇函数证明:的定义域为R.因为,则为奇函数(2)当x>0时,,因为,当且仅当即x=1时等号成立,所以;当x<0时,因为为奇函数,所以;当x=0时,;所以的值域为[,],,,函数是单调递减函数,所以函数的值域是对任意的,总存在,使得g(x1)=h(x2)成立,,,得.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集20、(1);(2)【解析】(1)分类讨论得;(2)由题意,得到等价不等式,解得的取值范围是试题解析:(1)∵函数.当,即时,;当,即时,;当,即时,.综上,(2)∵函数的零点都在区间内,等价于函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- VHDL电子密码锁课程设计
- 手摇风琴相关项目建议书
- 日历显示程序课程设计
- 摆钟表制造市场环境与对策分析
- 杀病毒剂相关项目实施方案
- 机械课程设计齿轮说明书
- 各个班组三级安全培训试题及参考答案(典型题)
- 机器人教学课程设计
- 公司项目负责人安全培训试题及参考答案(精练)
- 车间职工安全培训试题带答案(精练)
- 体育活动对学生团队协作精神的培养
- 大厦发电机房管理制度培训
- 建筑材料基本性质理论考核试题及答案
- 小学道德与法治课程标准与教材研究 课件 第六章 生命安全与健康教育
- 安徽干部教育在线2024年必修课考试答案汇总
- 银行跨境人民币结算业务创新与营销策略
- 注射相关感染预防与控制-护理团标
- 四年级美术 《海洋世界》【全国一等奖】
- Windows Server 2012 R2系统管理与服务器配置教案 项目5 (第8-9周)
- 微纳加工教学课件
- ESD技术要求和测试方法
评论
0/150
提交评论