版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市2025届高一数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=02.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.为了得到函数的图象,只要把函数图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变4.冰糖葫芦是中国传统小吃,起源于南宋.由山楂串成的冰糖葫芦如图1所示,若将山楂看成是大小相同的圆,竹签看成一条线段,如图2所示,且山楂的半径(图2中圆的半径)为2,竹签所在的直线方程为,则与该串冰糖葫芦的山楂都相切的直线方程为()A. B.C. D.5.已知幂函数f(x)=xa的图象经过点(2,),则函数f(x)为()A.奇函数且在上单调递增 B.偶函数且在上单调递减C.非奇非偶函数且在上单调递增 D.非奇非偶函数且在上单调递减6.全集U={1,2,3,4,5,6},M={x|x≤4},则M等于()A.{1,3} B.{5,6}C.{1,5} D.{4,5}7.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为A. B.C. D.8.等边三角形ABC的边长为1,则()A. B.C. D.9.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.10.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是定义在上周期为2的奇函数,若,则______12.已知函数,若,使得,则实数a的取值范围是___________.13.已知则_______.14.当时,,则a的取值范围是________.15.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bienao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为____16.如果实数满足条件,那么的最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求函数图形的对称轴;(2)若,不等式的解集为,,求实数的取值范围.18.已知函数在区间上的最大值为6.(1)求常数m的值;(2)当时,将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数,求函数的单调递减区间、对称中心.19.如图,在正方体中,为棱、的三等分点(靠近A点).求证:(1)平面;(2)求证:平面平面.20.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)21.已知集合A={x|﹣2≤x≤5},B={x|m﹣6≤x≤2m﹣1}(1)当m=﹣1时,求A∩B;(2)若集合B是集合A的子集,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.2、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.3、B【解析】直接利用三角函数伸缩变换法则得到答案.【详解】为了得到函数的图象,只需把函数的图象上所有的点横坐标缩短到原来的倍,纵坐标不变.故选:B4、D【解析】利用平行线间距离公式即得.【详解】由题可设与该串冰糖葫芦的山楂都相切的直线方程为,则,∴,∴与该串冰糖葫芦的山楂都相切的直线方程为.故选:D.5、C【解析】根据已知求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增【详解】∵幂函数f(x)=xa的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增故选C【点睛】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题6、B【解析】M即集合U中满足大于4的元素组成的集合.【详解】由全集U={1,2,3,4,5,6},M={x|x≤4}则M={5,6}.故选:B【点睛】本题考查求集合的补集,属于基础题.7、C【解析】连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.8、A【解析】直接利用向量的数量积定义进行运算,即可得到答案;详解】,故选:A9、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.10、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】根据给定条件利用周期性、奇偶性计算作答.【详解】因函数是上周期为2的奇函数,,所以.故答案为:1【点睛】易错点睛:函数f(x)是周期为T周期函数,T是与x无关的非零常数,且周期函数不一定有最小正周期.12、【解析】将“对,使得,”转化为,再根据二次函数的性质和指数函数的单调性求得最值代入即可解得结果.【详解】当时,,∴当时,,当时,为增函数,所以时,取得最大值,∵对,使得,∴,∴,解得.故答案为:.13、【解析】因为,所以14、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:15、【解析】M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆半径为AC=外接球的球心到平面ABC的距离为=1可得外接球的半径R=故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.16、1【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为1【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用余弦的降幂扩角公式化简为标准正弦型函数,进而求解对称轴即可;(2)求得函数在区间上的值域,以及绝对值不等式的解集,根据集合之间的包含关系,即可求得参数的取值范围.【详解】(1),解得:;(2),,,又解得而,得.【点睛】本题考查利用降幂扩角公式以及辅助角公式化简三角函数,以及三角函数对称轴和值域的求解,涉及根据集合之间的关系求参数的取值范围,属综合中档题.18、(1)3(2)单调递减区间为;对称中心.【解析】(1)先对化简,根据最大值求m;(2)利用整体代入法求单调递减区间和对称中心.【小问1详解】,由,所以在区间上的最大值为2+m+1=6,解得m=3.【小问2详解】由(1)知,.将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到.要求函数的单调递减区间,只需,解得.所以的单调递减区间为要求函数的对称中心,只需,解得.所以的对称中心为.19、(1)见解析;(2)见解析.【解析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,又平面,平面,满足定理所需条件;(2)欲证:平面平面,根据面面垂直的判定定理可知,在平面内一条直线与平面垂直,而平面,平面,则,,满足线面垂直的判定定理则平面,而平面,满足定理所需条件【详解】(1)证明:连接,在正方体中,对角线,又因为、为棱、的三等分点,所以,则,又平面,平面,所以平面(2)因为在正方体中,因为平面,而平面,所以,又因为在正方形中,,而,平面,平面,所以平面,又因为平面,所以平面平面【点睛】本题主要考查线面平行的判定定理和线面垂直的判定定理,以及考查对基础知识的综合应用能力和基本定理的掌握能力20、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.综上可知日销售金额最大值为1125元,此时.【点睛】本小题主要考查具体的函数模型在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢材采购总价合同模板
- 监控方案合同模板
- 企业除尘设备销售合同模板
- 车展参展合同模板
- 物流货运合作合同模板
- 公寓物业服务合同模板
- 施工合同模板包含些
- 商场整体承租合同模板
- 广告材料制作合同模板
- 2024三维数字化产品设计工艺仿真信息集成规范
- Q∕GDW 11612.41-2018 低压电力线高速载波通信互联互通技术规范 第4-1部分:物理层通信协议
- 清创术医学课件
- 2020-2021年说课大赛全国一等奖:人教版七年级上册生物说课:生物与环境组成生态系统课件
- 大学计算机基础ppt课件完整版
- NCStudioV5_4用户手册
- TPO句子简化题全集_翻译答案版
- 矮身材儿童诊治指南最终版(课堂PPT)
- 国旗下演讲讲话稿《重温行为规范,争做文明学生》
- 30个有趣的物理小实验及原理讲解
- 企业信用管理流程(课堂PPT)
- 冬季施工临时用电安全注意事项
评论
0/150
提交评论