![2025届安徽省池州市贵池区高一数学第一学期期末统考试题含解析_第1页](http://file4.renrendoc.com/view14/M06/18/1B/wKhkGWchMYOATAb8AAGbm-CwYJ0978.jpg)
![2025届安徽省池州市贵池区高一数学第一学期期末统考试题含解析_第2页](http://file4.renrendoc.com/view14/M06/18/1B/wKhkGWchMYOATAb8AAGbm-CwYJ09782.jpg)
![2025届安徽省池州市贵池区高一数学第一学期期末统考试题含解析_第3页](http://file4.renrendoc.com/view14/M06/18/1B/wKhkGWchMYOATAb8AAGbm-CwYJ09783.jpg)
![2025届安徽省池州市贵池区高一数学第一学期期末统考试题含解析_第4页](http://file4.renrendoc.com/view14/M06/18/1B/wKhkGWchMYOATAb8AAGbm-CwYJ09784.jpg)
![2025届安徽省池州市贵池区高一数学第一学期期末统考试题含解析_第5页](http://file4.renrendoc.com/view14/M06/18/1B/wKhkGWchMYOATAb8AAGbm-CwYJ09785.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省池州市贵池区高一数学第一学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的单调函数,满足,则函数的零点所在区间为()A. B.C. D.2.已知实数满足,则函数的零点所在的区间是()A. B.C. D.3.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.10104.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.45.函数f(x)=+的定义域为()A. B.C. D.6.若<α<π,化简的结果是()A. B.C. D.7.平行于同一平面的两条直线的位置关系是A.平行 B.相交或异面C.平行或相交 D.平行、相交或异面8.已知,若,则()A. B.C. D.9.已知正数、满足,则的最小值为A. B.C. D.10.若函数的定义域为,满足:①在内是单调函数;②存在区间,使在上的值域为,则称函数为“上的优越函数”.如果函数是“上的优越函数”,则实数的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.在空间直角坐标系中,点和之间的距离为____________.12.函数的定义域为_______________13.已知函数在区间是单调递增函数,则实数的取值范围是______14.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________15.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________16.已知函数,若,则实数_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且为第二象限角(1)求的值;(2)求值.18.设函数,(1)求函数的值域;(2)设函数,若对,,,求正实数a的取值范围19.化简求值:(1)已知都为锐角,,求的值;(2).20.已知函数(a为实常数)(1)若,设在区间的最小值为,求的表达式:(2)设,若函数在区间上是增函数,求实数a的取值范围21.设函数.(1)若函数的图象C过点,直线与图象C交于A,B两点,且,求a,b;(2)当,时,根据定义证明函数在区间上单调递增.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,,故,即因为,,由于,即有,所以故,即的零点所在区间为故选:C【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题2、B【解析】由已知可得,结合零点存在定理可判断零点所在区间.【详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.3、D【解析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D4、D【解析】由得,又由得函数为偶函数,所以选D5、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.6、A【解析】利用三角函数的平方关系式,根据角的范围化简求解即可【详解】=因为<α<π所以cos<0,结果为,故选A.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力7、D【解析】根据线面平行的位置关系及线线位置关系的分类及定义,可由已知两直线平行于同一平面,得到两直线的位置关系【详解】解:若,且则与可能平行,也可能相交,也有可能异面故平行于同一个平面的两条直线的位置关系是平行或相交或异面故选【点睛】本题考查的知识点是空间线线关系及线面关系,熟练掌握空间线面平行的位置关系及线线关系的分类及定义是详解本题的关键,属于基础题8、C【解析】设,求出,再由求出.【详解】设,因为所以,又,所以,所以.故选:C.9、B【解析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题10、D【解析】由于是“上的优越函数”且函数在上单调递减,由题意得,,问题转化为与在时有2个不同的交点,结合二次函数的性质可求【详解】解:因为是“上的优越函数”且函数在上单调递减,若存在区间,使在上的值域为,由题意得,,所以,,即与在时有2个不同的交点,根据二次函数单调性质可知,即故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用空间两点间的距离公式求解.【详解】由空间直角坐标系中两点间距离公式可得.故答案为:12、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.13、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间单调递增函数,则,故答案为:.14、3【解析】设铜球的半径为,则,得,故答案为.15、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.16、【解析】分和求解即可.【详解】当时,,所以(舍去);当时,,所以(符合题意).故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)cos,(2)【解析】(1)通过三角恒等式先求,再求即可;(2)先通过诱导公式进行化简,再将,的值代入即可得结果.【小问1详解】因为sin=,所以,且是第二象限角,所以cos=,从而【小问2详解】原式=18、(1);(2).【解析】(1)由题可得,利用基本不等式可求函数的值域;(2)由题可求函数在上的值域,由题可知函数在上的值域包含于函数在上的值域,由此可求正实数a的取值范围【小问1详解】∵,又,,∴,当且仅当,即时取等号,所以,即函数的值域为【小问2详解】∵,设,因为,所以,函数在上单调递增,∴,即,设时,函数的值域为A.由题意知,∵函数,函数图象的对称轴为,当,即时,函数在上递增,则,即,∴,当时,即时,函数在上的最大值为,中的较大者,而且,不合题意,当,即时,函数在上递减,则,即,满足条件的a不存在,综上,19、(1),(2)0.【解析】(1)先计算出,的值,然后根据角的配凑以及两角差的余弦公式求解出的值;(2)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式【小问1详解】因为,都为锐角,,,所以,,则【小问2详解】原式20、(1);(2)【解析】(1)用二次函数法求函数的最小值,要注意定义域,同时由于不确定,要根据对称轴分类讨论(2)首先用单调性定义证明单调性,可将“函数在区间上是增函数”转化为恒成立问题求即可【详解】(1)由于,当时,①若,即,则在为增函数,;②若,即时,;③若,即时,在上是减函数,;综上可得;(2)在区间上任取,(*)在上是增函数∴(*)可转化为对任意且都成立,即①当时,上式显然成立②,由得,解得;③,由得,,得,所以实数的取值范围是【点睛】本题考查二次函数在区间上的最值问题,注意要对对称轴和区间的位置进行讨论,考查单调性的应用,这类问题要转化为恒成立问题,实质还是研究最值,这里就会涉及到构造新函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代企业现金流分析与优化策略
- 国庆节汉服节活动方案
- 环境安全教育在校园的推广与实践
- Unit 4 Natural disasters Project 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 3 地球的形状说课稿-2023-2024学年大象版科学四年级下册
- 2023六年级语文上册 第三单元 12 故宫博物院说课稿新人教版
- Unit1 Making friends Part C(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册001
- 2024年四年级品社下册《第三单元 交通连着你我他》说课稿 山东版
- 27巨人的花园 说课稿 -2023-2024学年语文四年级下册统编版
- Module 3 Unit 2 You can use the computers.(说课稿)-2023-2024学年外研版(一起)英语五年级下册001
- 国家安全教育课程教学大纲分享
- 养殖场兽医服务合同
- 电气工程及其自动化基础知识单选题100道及答案解析
- HR六大板块+三支柱体系
- 慢性病患者门诊身份管理方案
- 2025年高考英语一轮复习讲义(新高考)第2部分语法第23讲状语从句(练习)(学生版+解析)
- 连铸工职业技能大赛考试题库-上(单选、多选题)
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- 十七个岗位安全操作规程手册
- 爆花(2023年陕西中考语文试卷记叙文阅读题及答案)
- 自主签到培训课件-早安!幼儿园
评论
0/150
提交评论