版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆阿克苏地区库车县乌尊镇乌尊中学2025届高二数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图像大致是()A. B.C. D.2.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.4.圆截直线所得弦的最短长度为()A.2 B.C. D.45.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-26.若指数函数(且)与三次函数的图象恰好有两个不同的交点,则实数的取值范围是()A. B.C. D.7.已知直线l:过椭圆的左焦点F,与椭圆在x轴上方的交点为P,Q为线段PF的中点,若,则椭圆的离心率为()A. B.C. D.8.方程表示的曲线是()A.一个椭圆和一个点 B.一个双曲线的右支和一条直线C.一个椭圆一部分和一条直线 D.一个椭圆9.抛物线的焦点坐标A. B.C. D.10.命题:,的否定为()A., B.不存在,C., D.,11.已知直线,当变化时,所有直线都恒过点()A.B.C.D.12.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为________14.曲线在x=1处的切线方程为__________.15.若函数在[1,3]单调递增,则a的取值范围___16.为增强广大师生生态文明意识,大力推进国家森林城市建设创建进程,某班26名同学在一段直线公路一侧植树,每人植一棵(各自挖坑种植),相邻两棵树相距均为10米,在同学们挖坑期间,运到的树苗集中放置在了某一树坑旁边,然后每位同学挖好自己的树坑后,均从各自树坑出发去领取树苗.记26位同学领取树苗往返所走的路程总和为,则的最小值为______米三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,,,为边上一点,且(1)求;(2)若,求18.(12分)在下面两个条件中任选一个条件,补充在后面问题中的横线上,并完成解答.条件①:展开式前三项的二项式系数的和等于37;条件②:第3项与第7项的二项式系数相等;问题:在二项式的展开式中,已知__________.(1)求展开式中二项式系数最大的项;(2)设,求的值;(3)求的展开式中的系数.19.(12分)在中,,,请再从条件①、条件②这两个条件中选择一个作为已知,然后解答下列问题.(1)求角的大小;(2)求的面积.条件①:;条件②:.20.(12分)已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;21.(12分)在一次重大军事联合演习中,以点为中心的海里以内海域被设为警戒区域,任何船只不得经过该区域.已知点正北方向海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东,且与点相距海里的位置,经过小时又测得该船已行驶到位于点北偏东,且与点相距海里的位置(1)求该船的行驶速度(单位:海里/小时);(2)该船能否不改变方向继续直线航行?请说明理由22.(10分)在正方体中,、、分别是、、的中点(1)证明:平面平面;(2)证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由导数判断函数的单调性及指数的增长趋势即可判断.【详解】当时,,∴在上单调递增,当时,,∴在上单调递减,排除A、D;又由指数函数增长趋势,排除C.故选:B2、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.3、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D4、A【解析】由题知直线过定点,且在圆内,进而求解最值即可.【详解】解:将直线化为,所以联立方程得所以直线过定点将化为标准方程得,即圆心为,半径为,由于,所以点在圆内,所以点与圆圆心间的距离为,所以圆截直线所得弦的最短长度为故选:A5、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.6、A【解析】分析可知直线与曲线在上的图象有两个交点,令可得出,令,问题转化为直线与曲线有两个交点,利用导数分析函数的单调性与极值,数形结合可得出实数的取值范围.【详解】当时,,,此时两个函数的图象无交点;当时,由得,可得,令,其中,则直线与曲线有两个交点,,当时,,此时函数单调递增,当时,,此时函数单调递减,则,且当时,,作出直线与曲线如下图所示:由图可知,当时,即当时,指数函数(且)与三次函数的图象恰好有两个不同的交点.故选:A.7、D【解析】由直线的倾斜角为,可得,结合,可推得是等边三角形,可得,计算可得离心率【详解】直线:过椭圆的左焦点,设椭圆的右焦点为,所以,又是的中点,是的中点,所以,又,所以,又,所以是等边三角形,所以,又在椭圆上,所以,所以,所以离心率为,故选:8、C【解析】由可得,或,再由方程判断所表示的曲线.【详解】由可得,或,即或,则该方程表示一个椭圆的一部分和一条直线.故选:C9、B【解析】由抛物线方程知焦点在x轴正半轴,且p=4,所以焦点坐标为,所以选B10、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D11、D【解析】将直线方程整理为,从而可得直线所过的定点.【详解】可化为,∴直线过定点,故选:D.12、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、##0.75【解析】根据椭圆和双曲线定义用长半轴长和实半轴长表示出撤掉装置前后的路程,然后由已知可解.【详解】记椭圆的长半轴长为,双曲线的实半轴长为,由椭圆和双曲线的定义有:,得,即,又由椭圆定义知,,因为,所以,即所以.故答案为:14、【解析】根据导数的几何意义求切线方程的斜率并求出,再由点斜式写出切线方程即可.【详解】由题设,,则,而,所以在x=1处的切线方程为,即.故答案为:.15、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:16、【解析】根据对称性易知:当树苗放在第13或14个坑,26位同学领取树苗往返所走的路程总和最小,再应用等差数列前n项和的求法求26位同学领取树苗往返所走的路程总和.【详解】将26个同学对应的26个坑分左右各13个坑,∴根据对称性:树苗放在左边13个坑,与放在对称右边的13个坑,26个同学所走的总路程对应相等,∴当树苗放在第13个坑,26位同学领取树苗往返所走的路程总和最小,此时,左边13位同学所走的路程分别为,右边13位同学所走的路程分别为,∴最小值为米.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【详解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴18、(1)答案见解析(2)0(3)560【解析】(1)选择①,由,得,选择②,由,得;(2)利用赋值法可求解;(3)分两个部分求解后再求和即可.【小问1详解】选择①,因为,解得,所以展开式中二项式系数最大的项为选择②,因为,解得,所以展开式中二项式系数最大的项为【小问2详解】令,则,令,则,所以,【小问3详解】因为所以的展开式中含的项为:所以展开式中的系数为560.19、(1)条件选择见解析,(2)【解析】(1)选①,利用余弦定理求出的值,结合角的取值范围,即可求得角的值;选②,利用余弦定理可求出的值,并利用余弦定理求出的值,结合角的取值范围,即可求得角的值;(2)利用三角形的面积公式可求得的面积.【小问1详解】解:选①,,由余弦定理可得,,所以,.选②,,整理可得,,解得,由余弦定理可得,,所以,.【小问2详解】解:由三角形的面积公式可得.20、(1)(2)【解析】(1)由圆C的圆心在坐标原点,且过点,求得圆的半径,利用圆的标准方程,即可求解;(2)由点到直线的距离公式,求得圆心到直线l的距离为,进而得到点P到直线的距离的最小值为,得出答案.【详解】(1)由题意,圆C的圆心在坐标原点,且过点,所以圆C的半径为,所以圆C的方程为.(2)由题意,圆心到直线l的距离为,所以P到直线的距离的最小值为.【点睛】本题主要考查了圆标准方程的求解,以及直线与圆的位置关系的应用,其中解答中熟练应用直线与圆的位置关系合理转化是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.21、(1)海里/小时;(2)该船要改变航行方向,理由见解析.【解析】(1)设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立平面直角坐标系,计算出,即可求得该船的行驶速度;(2)求出直线的方程,计算出点到直线的距离,可得出结论.【小问1详解】解:设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立如下图所示的平面直角坐标系,则坐标平面中,,且,,则、、,,所以,所以、两地的距离为海里,所以该船行驶的速度为海里/小时.【小问2详解】解:直线的斜率为,所以直线的方程为,即,所以点到直线的距离为,所以直线会与以为圆心,以个单位长为半径的圆相交,因此该船要改变航行方向,否则会进入警戒区域22、(1)证明见解析;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GJ072-生命科学试剂-MCE
- GDP-D-Rha6F2-生命科学试剂-MCE
- 智能电话机相关项目实施方案
- 木制门挡项目可行性实施报告
- 焊接课程设计时间安排
- 立方体纹理映射课程设计
- 北京联合大学《动画与运动规律》2023-2024学年第一学期期末试卷
- 婴儿用沐浴椅相关项目建议书
- 多功能音响课程设计
- 橡胶家务手套项目评价分析报告
- 日航哲学手册
- 律师尽职调查报告书(共5篇)
- 浙江中控DCS操作指导全面覆盖
- 绿树成荫(带意大利文)简谱五线谱钢琴谱正谱.pdf.docx
- (完整版)艺术专业中文词汇及其英文翻译
- 配电箱(柜)技术协议书范本
- 上海市总工会机关文件材料归档范围和文书档案保管期限表
- CT引导下经皮肺(纵膈)穿刺活检术规范流程版
- 水的组成教学设计
- 信雅达扫描客户端安装手册
- 唇腭裂病历模板
评论
0/150
提交评论