内蒙古磴口县2024年数学九上开学检测试题【含答案】_第1页
内蒙古磴口县2024年数学九上开学检测试题【含答案】_第2页
内蒙古磴口县2024年数学九上开学检测试题【含答案】_第3页
内蒙古磴口县2024年数学九上开学检测试题【含答案】_第4页
内蒙古磴口县2024年数学九上开学检测试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页内蒙古磴口县2024年数学九上开学检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.50° B.25° C.15° D.202、(4分)如图,在正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于点G,连接AG、HG.下列结论:①CE⊥DF;②AG=DG;③∠CHG=∠DAG.其中,正确的结论有()A.0个 B.1个 C.2个 D.3个3、(4分)如图,函数()和()的图象相交于点A,则不等式>的解集为()A.> B.< C.> D.<4、(4分)下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.每一条边都相等且每一个角也都相等的四边形是正方形D.平行四边形的对角线相等5、(4分)如图,在中,已知,分别为边,的中点,连结,若,则等于()A.70º B.67.5º C.65º D.60º6、(4分)下列图形中,是轴对称图形,不是中心对称图形的是()A. B.C. D.7、(4分)如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>1 D.x≥0且x≠18、(4分)若代数式在实数范围内有意义,则x的取值范为是()A.x≥-2 B.x>-2 C.x≥2 D.x≤2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知:等腰三角形ABC的面积为30,AB=AC=10,则底边BC的长度为_________m.10、(4分)抛物线与轴的公共点是,则这条抛物线的对称轴是__________.11、(4分)如图,在平行四边形中,,,,则______.12、(4分)如图,已知:∠MON=30°,点A、A、A…在射线ON上,点B、B、B…在射线OM上,△ABA、△ABA、△ABA…均为等边三角形,若OA=1,则△ABA的边长为____13、(4分)命题“如a2>b2,则a>b”的逆命题是■命题(填“真”或“假”).三、解答题(本大题共5个小题,共48分)14、(12分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某单位计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多700元,花3000元购买A种设备和花7200元购买B种设备的数量相同.(1)求A种、B种设备每台各多少元?(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于17000元,求A种设备至少要购买多少台?15、(8分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.16、(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为______,表中m的值为_______;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.17、(10分)对于自变量的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.对于分段函数,在自变量不同的取值范围内,对应的函数表达式也不同.例如:是分段函数,当时,函数的表达式为;当时,函数表达式为.(1)请在平面直角坐标系中画出函数的图象;(2)当时,求的值;(3)当时,求自变量的取值范围.18、(10分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题.(1)该班共有名学生;(2)在图(1)中,将表示“步行”的部分补充完整;(3)扇形图中表示骑车部分所占扇形的圆心角是.(4)如果小明所在年级共计800人,请你根据样本数据,估计一下该年级步行上学的学生人数是多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在四边形ABCD中,AD//BC,E、F分别是AB、CD的中点,若AD=3,BC=5,则EF=____________.20、(4分)若,则等于______.21、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.22、(4分)如图所示,将直角三角形ACB,∠C=90°,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=3,阴影部分面积为_____________.23、(4分)菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)25、(10分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.26、(12分)如图,已知,点在上,点在上.(1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);(2)连结,求证四边形是菱形.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.【详解】在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=12AB,PN=12DC,PM∥AB,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN=180°-130°2故选B.本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.2、C【解析】

连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E.F.H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,

在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD,AH垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH≌△DCF∴∠DAH=∠CDF,∴∠DAG=2∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠GHC=∠DAG,故③正确,所以①和③正确选择C.本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE≌△CDF,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC,而DG≠DC,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF即可.3、A【解析】试题解析:由图象可以看出当时,的图象在图象的上方,所以的解集为.故本题应选A.4、C【解析】

根据矩形的判定、正方形的判定、和菱形的判定以及平行四边形的性质判断即可.【详解】解:A、对角线平分且相等的四边形是矩形,错误;B、对角线互相垂直平分的四边形是菱形,错误;C、每一条边都相等且每一个角也都相等的四边形是正方形,正确;D、矩形的对角线相等,错误;故选:C.此题考查正方形的判定,关键是根据矩形的判定、正方形的判定、和菱形的判定以及平行四边形的性质解答.5、A【解析】

由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.【详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠AED=∠C=70°,故选A此题考查平行线的性质,三角形中位线定理,难度不大6、B【解析】

根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;B选项是轴对称图形,不是中心对称图形,故本选项符合题意;C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.故选B.此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.7、C【解析】

根据二次根式中被开方数是非负数,分式分母不为零列出不等式即可求出答案.【详解】根据题意可知,解得x>1,故答案选C.本题考查的是二次根式和分式存在有意义的条件,熟知该知识点是解题的关键.8、C【解析】试题分析:根据二次根式的意义,x-2≥0,解得x≥2.故选C.考点:二次根式的意义.二、填空题(本大题共5个小题,每小题4分,共20分)9、或【解析】

作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.【详解】作CD⊥AB于D,

则∠ADC=∠BDC=90°,△ABC的面积=AB⋅CD=×10×CD=30,

解得:CD=6,

∴AD==8m;

分两种情况:

①等腰△ABC为锐角三角形时,如图1所示:

BD=AB−AD=2m,

∴BC==;

②等腰△ABC为钝角三角形时,如图2所示:

BD=AB+AD=18m,

∴BC==;

综上所述:BC的长为或.

故答案为:或.本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论等腰三角形.10、【解析】

根据二次函数的抛物线的对称性,可得二次函数与x轴的交点是关于抛物线的对称轴对称的,已知两个交点的坐标,求出中点,即可求出对称轴.【详解】解:根据抛物线的对称性可得:的中心坐标为(1,0)因此可得抛物线的对称轴为故答案为本题主要考查抛物线的对称性,关键在于求出抛物线与x轴的交点坐标的中点.11、【解析】

根据平行四边形的性质可得AB=10,BC=AD=6,由BC⊥AC,根据勾股定理求得AC的长,即可求得OA长,再由勾股定理求得OB的长,即可求得BD的长.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.本题考查了平行四边形的性质以及勾股定理,熟练运用平行四边形的性质及勾股定理是解决本题的关键.12、32【解析】

根据等腰三角形的性质以及平行线的性质得出AB∥AB∥AB,以及AB=2BA,得出AB=4BA=4,AB=8BA=8,AB=16BA…进而得出答案.【详解】∵△ABA是等边三角形,∴AB=AB,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA=AB=1,∴AB=1,∵△ABA、△BA是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴AB∥AB∥AB,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴AB=2BA,AB=4BA,∴AB=4BA=4,AB=8BA=8,AB=16BA=16,以此类推:AB=32BA=32.故答案为:32此题考查等边三角形的性质,含30度角的直角三角形,解题关键在于根据等腰三角形的性质以及平行线的性质得出AB∥AB∥AB13、假【解析】先写出命题的逆命题,然后在判断逆命题的真假.解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=-2,此时a>b,但a2<b2,即此命题为假命题.故答案为假.三、解答题(本大题共5个小题,共48分)14、(1)每台A种设备500元,每台B种设备1元;(2)A种设备至少要购买2台.【解析】

(1)设每台A种设备x元,则每台B种设备(x+700)元,根据数量=总价÷单价结合花3000元购买A种设备和花7200元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购买A种设备m台,则购买B种设备(20−m)台,根据总价=单价×数量结合总费用不高于17000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.【详解】(1)设每台A种设备x元,则每台B种设备(x+700)元,根据题意得:,解得:x=500,经检验,x=500是原方程的解,∴x+700=1.答:每台A种设备500元,每台B种设备1元;(2)设购买A种设备m台,则购买B种设备(20﹣m)台,根据题意得:500m+1(20﹣m)≤17000,解得:m≥2.答:A种设备至少要购买2台.本题考查了分式方程的应用以及一元一次不等式的应用,正确的理解题意是解题的关键.15、四边形GECF是菱形,理由详见解析.【解析】试题分析:根据全等三角形的判定定理HL进行证明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根据平行线EG∥CD的性质、∠BAC平分线的性质以及等量代换推知∠FEC=∠CFE,易证CF=CE;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF是菱形,理由如下:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL),∴GE=EC,∵CD是AB边上的高,∴CD⊥AB,又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA,∵Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.考点:菱形的判定.16、(1)120;45%;(2)补图见解析;(3)平均每天得到约1980人的肯定.【解析】

(1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m(2)计算出比较满意的n的值,然后补全条形图即可(3)每天接待的游客×(非常满意+满意)的百分比即可【详解】(1)12÷10%=120;54÷120×100%=45%(2)比较满意:120×40%=48(人);补全条形统计图如图.(3)3600×(45%+10%)=1980(人).答:该景区服务工作平均每天得到约1980人的肯定.统计图有关的计算是本题的考点,熟练掌握其特点并正确计算是解题的关键.17、(1)见解析;(2)y=-1;(3).【解析】

(1)当时,,为一次函数,可以画出其图象,当,,也为一次函数,同理可以画出其图象即可;(2)当时,代入,求解值即可;(3)时,分别代入两个表达式,求解即可.【详解】(1)图象如图所示:(2)当时,;(3)时,,解得:,,,故.本题考查的是一次函数的性质,涉及了函数图象的画法、函数值的计算等,正确把握相关知识是解题的关键.18、(1)50;(2)见解析;(3)108°;)(4)160.【解析】

(1)根据乘车的人数是25,所占的百分比是50%,即可求得总人数;(2)利用总人数乘以步行对应的百分比即可求得步行的人数,从而补全统计图;(3)根据三部分百分比的和是1求得“骑车”对应的百分比,再乘以360°可得答案;(4)利用总人数800乘以步行对应的百分比即可.【详解】解:(1)该班总人数是:25÷50%=50(人),故答案为:50;(2)步行的人数是:50×20%=10(人).;(3)“骑车”部分所对应的百分比是:1﹣50%﹣20%=30%,所以扇形图中表示骑车部分所占扇形的圆心角为360°×30%=108°,故答案为:108°;(4)估计该年级步行上学的学生人数是:800×20%=160(人).本题考查的是条形统计图和扇形统计图的综合运用以及样本估计总计.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

由题意可知EF为梯形ABCD的中位线,根据梯形中位线等于上底加下底的和的一半可得答案.【详解】∵四边形ABCD中,AD//BC∴四边形ABCD为梯形,∵E、F分别是AB、CD的中点∴EF是梯形ABCD的中位线∴EF===1故答案为:1.本题考查梯形的中位线,熟练掌握梯形中位线的性质是解题的关键.20、【解析】

依据比例的基本性质,即可得到5a=7b,进而得出=.【详解】解:∵,∴5a-5b=2b,即5a=7b,∴=,故答案为:.本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.21、或【解析】

当△CB′E为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8-x,然后在Rt△CEB′中运用勾股定理可计算出x.再在Rt△ABE中,利用勾股定理可得AE的长②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.可得AB=BE,在Rt△ABE中,利用勾股定理可得AE的长.【详解】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=6,∴CB′=10-6=4;设BE=,则EB′=,CE=在Rt△CEB′中,由勾股定理可得:,解得:在Rt△ABE中,利用勾股定理可得:②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6,∴在Rt△ABE中,利用勾股定理可得:综上所述,的长为或故答案为或本题考查了折叠问题:折叠前后两图形全等,也考查了矩形的性质以及勾股定理.注意需要分类讨论22、1【解析】

根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.【详解】∵△ACB平移得到△DEF,∴CE=BF=2,DE=AC=6,∴GE=DE-DG=6-3=3,由平移的性质,S△ABC=S△DEF,∴阴影部分的面积=S梯形ACEG=12(GE+AC)•CE=12(3+6)故答案为:1.本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.23、9或【解析】

如图,根据题意得:∠BAC=120°,易得∠ABC=60°,所以△ABC为等边三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性质可得边AB的长.【详解】∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论