版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北随州市普通高中2025届高二上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.322.如图,空间四边形中,,,,且,,则()A. B.C. D.3.已知,则的最小值是()A.3 B.8C.12 D.204.曲线与曲线的()A.实轴长相等 B.虚轴长相等C.焦距相等 D.渐进线相同5.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.6.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.67.已知,表示两条不同的直线,表示平面.下列说法正确的是A.若,,则B.若,,则C.若,,则D.若,,则8.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=09.在中,角A,B,C所对的边分别为a,b,c,若,,的面积为10,则的值为()A. B.C. D.10.展开式的第项为()A. B.C. D.11.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-112.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.14.函数,若,则的值等于_______15.已知函数,,则曲线在处的切线方程为___________.16.函数单调增区间为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,分别为,的中点(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值18.(12分)已知命题:方程表示焦点在轴上的双曲线,命题:关于的方程无实根(1)若命题为真命题,求实数的取值范围;(2)若“”为假命题,"”为真命题,求实数的取值范围19.(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.20.(12分)已知抛物线的准线方程为(1)求C的方程;(2)直线与C交于A,B两点,在C上是否存在点Q,使得直线QA,QB分别与y轴交于M,N两点,且?若存在,求出点Q的坐标;若不存在,说明理由21.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和22.(10分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.2、C【解析】根据空间向量的线性运算即可求解.【详解】因为,又因为,,所以.故选:C3、A【解析】利用基本不等式进行求解即可.【详解】因为,所以,当且仅当时取等号,即当时取等号,故选:A4、D【解析】将曲线化为标准方程后即可求解.【详解】化为标准方程为,由于,则两曲线实轴长、虚轴长、焦距均不相等,而渐近线方程同为.故选:5、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.6、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B7、B【解析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断【详解】A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,,由线面垂直的性质定理可知,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错故选B【点睛】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟定理是解题的关键,注意观察空间的直线与平面的模型8、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A9、A【解析】由同角公式求出,根据三角形面积公式求出,根据余弦定理求出,根据正弦定理求出.【详解】因为,所以,因为,的面积为10,所以,故,从而,解得,由正弦定理得:.故选:A.【点睛】本题考查了同角公式,考查了三角形的面积公式,考查了余弦定理,考查了正弦定理,属于基础题.10、B【解析】由展开式的通项公式求解即可【详解】因为,所以展开式的第项为,故选:B11、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D12、A【解析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:14、【解析】对函数进行求导,把代入导函数中,化简即可求出的值.【详解】函数.故答案为:.15、【解析】根据导数的几何意义求得在点处的切线方程.【详解】由,求导,知,又,则函数在点处的切线方程为.故答案为:16、【解析】利用导数法求解.【详解】因为函数,所以,当时,,所以的单调增区间是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由正方体性质易得,根据线面平行的判定可得面、面,再由面面平行的判定证明结论;(2)建立空间直角坐标系,设正方体棱长为2,确定相关点的坐标,进而求两个半平面的法向量,应用空间向量夹角的坐标表示求二面角的余弦值【小问1详解】在正方体中,且,且,且,则四边形为平行四边形,即有,因为面,面,则平面,同理平面,又,面,则平面平面E.小问2详解】以点为坐标原点,,,所在直线分别为、、轴建立如图所示的空间直角坐标系,设正方体的棱长为,则,,所以,,设平面的法向量为,则,令,则由平面,则是平面的一个法向量设平面与平面夹角,,因此平面与平面所成锐二面角的余弦值为18、(1);(2).【解析】(1)由双曲线标准方程的性质得,即可求m的范围;(2)当q命题为真时,方程无实根,判别式小于零,求得m的范围,再由复合命题的真假得和一真一假,列出不等式组运算可得解【小问1详解】∵方程表示焦点在轴上的双曲线,∴,解得【小问2详解】若为真命题,则,解得,∵“”为假命题,”为真命题,∴一真一假当真假时,“”且“或”,则;当假真时,,则综上所述,实数的取值范围是19、(1);(2)答案见解析.【解析】(1)当时,,求出函数的导函数,再求出,,再利用点斜式求出切线方程;(2)首先求出函数的导函数,再对参数分类讨论,求出函数的单调区间;【详解】解:(1)当时,,所以,所以,,所以切线方程为:,即:(2)函数定义域为,,因为,①当时,在上恒成立,所以函数的单调递增区间为,无单调递减区间;②当时,由得,由得,所以函数的单调递增区间为,单调递减区间为【点睛】本题考查导数的几何意义,利用导数研究含参函数的单调区间,属于基础题.20、(1)(2)见解析【解析】(1)根据准线方程得出抛物线方程;(2)联立直线和抛物线方程,由韦达定理结合求解即可.【小问1详解】【小问2详解】设,联立,得由,得,假设C上存在点Q,使得直,则又即存在点满足条件.21、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同维权解决律师代理
- 广场建设石材加工厂招标
- 学生积极参与活动承诺书
- 单位采购合同中的国际技术标准
- 录播教室购销协议格式
- 人才库查询服务合同模板
- 食品供应商合同范本样式
- 给排水工程招投标信用评级
- cad cam应用课程设计
- 室内装修贴砖分包
- 沥青软化点试验(环球法)
- 破产管理人报酬计算器
- 初二上学期家长会ppt课件
- 汽油柴油一书一签
- 痢菌净与6种抗菌药对鸡大肠埃希菌的体外联合药敏试验研究
- 22066kV变电站电气设计
- 高中数学一元二次不等式教案(共5页)
- 危险性较大工程确认报审表.docx
- 医院手术部(室)管理规范试题及答案
- 宋太祖赵匡胤PPT
- 中职学校《金属加工与实训》全套电子教案(含教学进度计划)(配套教材:高教版中职统编)云天课件
评论
0/150
提交评论