




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁三中2025届高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.2.设,,,则的大小顺序是A. B.C. D.3.设,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为()A. B.C. D.5.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C. D.6.已知,若,则x的取值范围为()A. B.C. D.7.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.8.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.9.直线的倾斜角为A. B.C. D.10.已知,,且,则的最小值为()A. B.C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.若一个扇形的周长为,圆心角为2弧度,则该扇形的面积为__________12.已知点角终边上一点,且,则______13.已知点,,则以线段为直径的圆的标准方程是__________14.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元15.已知函数满足下列四个条件中的三个:①函数是奇函数;②函数在区间上单调递增;③;④在y轴右侧函数的图象位于直线上方,写出一个符合要求的函数________________________.16.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点且∠MCN=120°.(1)求圆C的标准方程;(2)求过点P(0,3)的直线l与圆C交于不同的两点D,E,若|DE|=2,求直线l的方程.18.在①函数为奇函数;②当时,;③是函数的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数,的图象相邻两条对称轴间的距离为,______.(1)求函数的解析式;(2)求函数在上的单调递增区间.19.设是定义在上的奇函数,且当时,.(1)求当时,的解析式;(2)请问是否存在这样的正数,,当时,,且的值域为?若存在,求出,的值;若不存在,请说明理由.20.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.21.设分别是的边上的点,且,,,若记试用表示.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.2、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.3、A【解析】解不等式,再判断不等式解集的包含关系即可.【详解】由得,由得,故“”是“”的充分不必要条件.故选:A.4、B【解析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,所以右图的图象所对应的解析式为.故选:B5、B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选6、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.7、D【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.8、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.9、B【解析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B10、A【解析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积【详解】设扇形的半径为:R,所以2R+2R=8,所以R=2,扇形的弧长为:4,半径为2,扇形的面积为:4(cm2)故答案为4【点睛】本题是基础题,考查扇形的面积公式的应用,考查计算能力12、【解析】利用任意角的三角函数的定义,即可求得m值【详解】点角终边上一点,,则,故答案为【点睛】本题考查任意角的三角函数的定义,属于基础题13、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.14、2400【解析】由题意直接利用指数幂的运算得到结果【详解】12年后的价格可降为81002400元故答案为2400【点睛】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题15、【解析】满足①②④的一个函数为,根据奇偶性以及单调性,结合反比例函数的性质证明①②④.【详解】满足①②④对于①,函数的定义域为关于原点对称,且,即为奇函数;对于②,任取,且因为,所以,即函数在区间上单调递增;对于④,令,当时,,即在y轴右侧函数的图象位于直线上方故答案为:【点睛】关键点睛:解决本题的关键在于利用定义证明奇偶性以及单调性.16、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(x﹣1)2+y2=4;(2)y或x=0【解析】(1)由题意设圆心为,且,再由已知求解三角形可得,于是可设圆的标准方程为,由点到直线的距离列式求得值,则圆的标准方程可求;(2)当直线的斜率存在时,设直线的方程为,即,利用圆心到直线的距离等于半径列式求得,可得直线方程,验证当时满足题意,则答案可求【详解】解:(1)由题意设圆心为,且,由,可得中,,,则,于是可设圆的标准方程为,又点到直线的距离,解得或(舍去)故圆的标准方程为;(2)当直线的斜率存在时,设直线的方程为,即则由题意可知,圆心到直线的距离故,解得又当时满足题意,故直线的方程为或【点睛】本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题.18、(1)选条件①②③任一个,均有;(2)选条件①②③任一个,函数在上的单调递增区间均为,.【解析】(1)由相邻两条对称轴间的距离为,得到;再选择一个条件求解出;(2)由(1)解得的函数,根据复合函数的单调性得到单调区间.【详解】解:函数的图象相邻对称轴间的距离为,,,.方案一:选条件①为奇函数,,解得:,.(1),,;(2)由,,得,,令,得,令,得,函数在上的单调递增区间为,;方案二:选条件②,,,或,,(1),,;(2)由,,得,,令,得,令,得,函数在上的单调递增区间为,;方案三:选条件③是函数的一个零点,,,.(1),,;(2)由,,得,令,得,令,得.函数在上的单调递增区间为,【点睛】本题以一个相对开放的形式考查三角函数的性质,要求解的值,即要找出周期,求常见方法是代入一个点即可.19、(1)当时,(2),【解析】(1)根据函数的奇偶性,求解解析式即可;(2)根据题意,结合函数单调性,将问题转化为是方程的两个根的问题,进而解方程即可得答案.【详解】(1)当时,,于是.因为是定义在上的奇函数,所以,即.(2)假设存在正实数,当时,且的值域为,根据题意,,因为,则,得.又函数在上是减函数,所以,由此得到:是方程的两个根,解方程求得所以,存在正实数,当时,且的值域为20、证明详见解析;(2)时,的最小值是.【解析】(1)根据函数单调性定义法证明,定义域内任取,且,在作差,变形后判断符号,证明函数的单调性;(2)首先根据函数的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国烟草总公司安徽省公司招聘考试真题2024
- 2024年陕西省公务员真题
- 无锡城市职业技术学院《细胞与分子生物学技术》2023-2024学年第二学期期末试卷
- 2025年四川省成都市中考化学试卷及答案
- Louisianin-C-生命科学试剂-MCE
- 12R-1-12-Octadecanediol-12R-Octadecane-1-12-diol-生命科学试剂-MCE
- 工业制造企业标准化服务实践
- 工业互联网的数据安全保障技术
- 工业互联网中数据中心的运维管理与技术创新研究
- 工业互联网与智能制造发展趋势
- 篮球大单元教学计划
- 河南省信阳市历史中考试题与参考答案(2025年)
- 光伏项目居间服务合同协议书
- DL∕T 5390-2014 发电厂和变电站照明设计技术规定
- 2023年上海浦东新区公办学校储备教师教辅招聘考试真题
- 《压铸件常见缺陷》课件
- 系统整合选择题附有答案
- 2024年贵州省中考理科综合试卷(含答案)
- TSG-T7001-2023电梯监督检验和定期检验规则宣贯解读
- 万科物业管理公司员工手册
- 机器学习在教育领域的应用研究
评论
0/150
提交评论