版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省齐市地区普高联谊校2025届高一上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为()A.5 B.6C.8 D.102.若函数的图象与轴有交点,且值域,则的取值范围是()A. B.C. D.3.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.694.已知函数,则下列区间中含有的零点的是()A. B.C. D.5.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)6.设,则()A. B.C. D.7.已知,则直线ax+by+c=0与圆的位置关系是A.相交但不过圆心 B.相交且过圆心C.相切 D.相离8.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱9.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为10.已知函数,将的图象上所有点沿x轴平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,且函数的图象关于y轴对称,则的最小值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则_____________12.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________13.已知向量满足,且,则与的夹角为_______14.在中,已知是延长线上一点,若,点为线段的中点,,则_________15.已知函数满足,则________.16.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.18.已知幂函数过点(2,4)(1)求解析式(2)不等式的解集为[1,2],求不等式的解集.19.如图,四棱锥的底面为矩形,,.(1)证明:平面平面.(2)若,,,求点到平面的距离.20.记.(1)化简;(2)若为第二象限角,且,求的值.21.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】从图象中的最小值入手,求出,进而求出函数的最大值,即为答案.【详解】从图象可以看出,函数最小值为-2,即当时,函数取得最小值,即,解得:,所以,当时,函数取得最大值,,这段时间水深(单位:m)的最大值为8m.故选:C2、D【解析】由函数有零点,可求得,由函数的值域可求得,综合二者即可得到的取值范围.【详解】定义在上的函数,则,由函数有零点,所以,解得;由函数的值域,所以,解得;综上,的取值范围是故选:D3、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B4、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】由于函数为增函数,函数在和上均为增函数,所以,函数在和上均为增函数.对于A选项,当时,,,此时,,所以,函数在上无零点;对于BCD选项,当时,,,由零点存在定理可知,函数的零点在区间内.故选:C.5、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、D【解析】由,则,再由指数、对数函数的单调性得出大小,得出答案.【详解】由,则,,所以故选:D7、A【解析】∵2a2+2b2=c2,∴a2+b2=.∴圆心(0,0)到直线ax+by+c=0的距离d=<2,∴直线ax+by+c=0与圆x2+y2=4相交,又∵点(0,0)不在直线ax+by+c=0上,故选A点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系(2)代数法:联立方程之后利用Δ判断(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题8、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.9、A【解析】由基本不等式可得答案.【详解】因为,所以,当且仅当即时等号成立.故选:A.10、B【解析】先将解析式化简后,由三角函数图象变换得到的解析式后求解.【详解】若向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,由题意得,的最小值为;若向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,同理得的最小值为,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】设出幂函数解析式,代入已知点坐标求解【详解】设,由已知得,所以,故答案为:12、【解析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:13、##【解析】根据平面向量的夹角公式即可求出【详解】设与的夹角为,由夹角余弦公式,解得故答案为:14、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题15、6【解析】由得出方程组,求出函数解析式即可.【详解】因为函数满足,所以,解之得,所以,所以.【点睛】本题主要考查求函数的值,属于基础题型.16、【解析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,,,即,故,,当时,,不成立,舍去;当时,,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,,,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,故.故.18、(1);(2)【解析】(1)先设幂函数解析式为,再由函数过点(2,4),求出,即可得出结果;(2)先由不等式的解集为[1,2],求出,进而可求出结果.【详解】(1)设幂函数解析式为因为函数图像过点(2,4),所以所以所求解析式为(2)不等式的解集为[1,2],的解集为,和是方程的两个根,,,因此;所以不等式可化,即,解得,所以原不等式的解集为.【点睛】本题主要考查函数的解析式,以及一元二次不等式解法,属于基础题型.19、(1)证明见解析;(2).【解析】(1)连接,交于点,连接,证明平面,即可证明出平面平面.(2)用等体积法,即,即可求出答案.【小问1详解】连接,交于点,连接,如图所示,底面为矩形,为,的中点,又,,,,又,平面,平面,平面平面【小问2详解】,,,,在中,,,在中,,在中,,,,,,设点到平面的距离为,由等体积法可知,又平面,为点到平面的距离,,,即点到平面的距离为20、(1)见解析;(2).【解析】(1)直接利用诱导公式化简即可;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气胸护理查房查体流程
- 2023年高密度电阻率仪资金需求报告
- 海底捞服务86个细节
- 游乐场服务礼仪培训
- 智能语音识别垃圾桶
- 二年级下册数学教案- 第一单元【第三课时】 简单的统计图 人教新课标
- 中班音乐教案:小小粉刷匠
- 二年级上册数学教案-单元复习第七单元 认识时间人教新课标
- 检察院一帮一扶贫解困工作情况报告
- 肩周炎护理常规
- 《成本管理培训》课件
- 少先队活动课《民族团结一家亲-同心共筑中国梦》课件
- 《失眠不寐》课件
- 法人代表代持股份协议书(2篇)
- 2024年形势与政策 第五讲《铸牢中华民族共同体意识》
- 企事业单位司机招聘合同范本
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 2023-2024学年教科版三年级上学期科学期中检测试卷(含答案)
- 钻井作业指导书
- 供应链管理:高成本、高库存、重资产的解决方案 第2版
评论
0/150
提交评论