




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市十中数学高二上期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.42.已知数列的首项为,且,若,则的取值范围是()A. B.C. D.3.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.24.对于实数a,b,c,下列命题中的真命题是()A.若,则 B.,则C.若,,则, D.若,则5.已知圆:,点,则点到圆上点的最小距离为()A.1 B.2C. D.6.如果向量,,共面,则实数的值是()A. B.C. D.7.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.128.已知直线的一个方向向量为,则直线的倾斜角为()A. B.C. D.9.已知,设函数,若关于的不等式恒成立,则的取值范围为()A. B.C. D.10.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.5611.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.12.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.117二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,已知,,,,则___________.14.抛物线的准线方程是________15.在等差数列中,前n项和记作,若,则______16.设数列满足,则an=________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,设牧场从今年起每年年初的计划存栏数依次为,,….(参考数据:,,.)(1)写出一个递推公式,表示与之间的关系;(2)将(1)中的递推关系表示成的形式,其中k,r为常数;(3)求的值(精确到1).18.(12分)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围.19.(12分)近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势,一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染,空气污染,土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).参考数据:65091.552.51478.630.5151546.5表中.(1)根据散点图判断与,哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;(3)经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N),那这种化肥的有效率超过58%的概率约为多少?附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;②若随机变量,则有,;③取.20.(12分)已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由21.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边垂直平分线所在的直线的方程;(2)若的面积为5,求点的坐标22.(10分)某项目的建设过程中,发现其补贴额x(单位:百万元)与该项目的经济回报y(单位:千万元)之间存在着线性相关关系,统计数据如下表:补贴额x(单位:百万元)23456经济回报y(单位:千万元)2.5344.56(1)请根据上表所给的数据,求出y关于x的线性回归直线方程;(2)为高质量完成该项目,决定对负责该项目的7名工程师进行考核.考核结果为4人优秀,3人合格.现从这7名工程师中随机抽取3人,用X表示抽取的3人中考核优秀的人数,求随机变量X的分布列与期望.参考公式:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.2、C【解析】由题意,得到,利用叠加法求得,结合由,转化为恒成立,分,和三种情况讨论,即可求解.【详解】因为,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,当时,,不等式可化为恒成立,所以;当时,,不等式可化为恒成立;当时,,不等式可化为恒成立,所以,综上可得,实数的取值范围是.故选:C.3、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.4、C【解析】对于选项A,可以举反例判断;对于选项BCD可以利用作差法判断得解.【详解】解:A.若,则不一定成立.如:.所以该选项错误;B.,所以,所以该选项错误;C.,所以该选项正确;D.,所以该选项错误.故选:C5、C【解析】写出圆的圆心和半径,求出距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆:,得圆,半径为,所以,所以点到圆上点的最小距离为.故选:C.6、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.7、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C8、A【解析】由直线斜率与方向向量的关系算出斜率,然后可得.【详解】记直线的倾斜角为,由题知,又,所以,即.故选:A9、D【解析】由题设易知上恒成立,而在上,讨论、,结合导数研究的最值,由不等式恒成立求的取值范围.【详解】由时,在上;由时,在上递减,值域为;令且,则,当时,,即递增,值域为,满足题设;当时,在上,即递减,在上,即递增,此时值域为;当,即时存在,而在中,此时,不合题设;所以,此时要使的不等式恒成立,只需,即,可得;综上,关于的不等式恒成立,则的取值范围为.故选:D【点睛】关键点点睛:由题设易知上,只需在上恒有即可.10、A【解析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.11、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C12、B【解析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【详解】因为等差数列中,,则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、或##或【解析】根据向量平行时坐标的关系和向量的模公式即可求解.【详解】,且,设,,解得,或.故答案为:或.14、【解析】将抛物线方程化为标准形式,从而得到准线方程.【详解】抛物线方程可化为:抛物线准线方程为:故答案为【点睛】本题考查抛物线准线的求解,易错点是未将抛物线方程化为标准方程.15、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:16、【解析】先由题意得时,,再作差得,验证时也满足【详解】①当时,;当时,②①②得,当也成立.即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)10626【解析】(1)根据题意,建立递推关系即可;(2)利用待定系数法求解得.(3)利用等比数列求和公式,结合已知数据求解即可.【小问1详解】解:因为某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,所以,且.【小问2详解】解:将化成,因为所以比较的系数,可得,解得.所以(1)中的递推公式可以化为.【小问3详解】解:由(2)可知,数列是以为首项,1.08为公比的等比数列,则.所以.18、(1)在上单调递减,在上单调递增(2)【解析】(1)研究当时的导数的符号即可讨论得到的单调性;(2)对原函数求导,对a的范围分类讨论即可得出答案.【小问1详解】当时,,令,则,所以在上单调递增.又因为,所以当时,,当时,,所以在上单调递减,在上单调递增.【小问2详解】,且.①当时,由(1)可知当时,所以在上单调递增,则,符合题意.②当时,,不符合题意,舍去.③当时,令,则,则,,当时,,所以在上单调递减,当时,,不符合题意,舍去.综上,a的取值范围为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用19、(1);(2);810公斤;(3).【解析】(1)根据散点图的变化趋势,结合给定模型的性质直接判断适合的模型即可.(2)将(1)中模型取对得,结合题设及表格数据求及参数,进而可得参数c,即可确定回归方程,进而估计时粮食亩产量y的值.(3)由题设知,结合特殊区间的概率值及正态分布的对称性求即可.【小问1详解】根据散点图,呈现非线性的变化趋势,故更适合作为关于的回归方程类型.【小问2详解】对两边取对数,得,即,由表中数据得:,,,则,∴关于的回归方程为,当时,,∴当化肥施用量为27公斤时,粮食亩产量约为810公斤.小问3详解】依题意,,则有,∴,则,∴这种化肥的有效率超过58%的概率约为.20、(1),;(2)存在或,使得,理由见解析.【解析】(1)根据离心率,及求出,,进而得到椭圆方程及用m,n表示点M的坐标;(2)假设存在,根据得到,表达出点坐标,得到,结合得到,从而求出答案.【小问1详解】由离心率可知:,又,,解得:,,故椭圆C:,直线PA为:,令得:,所以;【小问2详解】存在或,使得,理由如下:假设,使得,则,其中,直线:,令得:,则,,解得:,其中,故,所以,所以或21、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据的面积为5,求得点到直线的距离,再利用点到直线的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国滚塑工艺行业运行状况及前景趋势分析报告
- 2025-2030年中国混凝土泵行业前景调查及未来风险评估报告
- 2025-2030年中国汽车手动变速器市场发展前景调研与投资策略分析报告
- 2025-2030年中国氨水行业运营状况与发展前景分析报告
- 2025-2030年中国气泡水行业运营状况与发展潜力分析报告
- 2025-2030年中国有机肥料及微生物肥料制造市场十三五规划及投资战略研究报告
- 2025-2030年中国报刊业出版发行市场运行动态及发展趋势预测报告
- 2025-2030年中国开水煲市场运行状况及投资战略研究报告
- 2025-2030年中国富硒农产品市场运营状况与发展潜力分析报告
- 2025-2030年中国动画电影市场运行现状及发展趋势分析报告
- 2025年中国联通上海市分公司招聘130人高频重点模拟试卷提升(共500题附带答案详解)
- 2025年河南质量工程职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024-2025学年第二学期学校全面工作计划
- 2025年中国spa行业市场全景分析及投资前景展望报告
- GB 45187-2024坠落防护动力升降防坠落装置
- 2024年青岛港湾职业技术学院高职单招数学历年参考题库含答案解析
- 环保行业环保管理制度环保责任落实制度
- 2025年山东菏投建设集团招聘笔试参考题库含答案解析
- 市政质量员继续教育考试题库集(含答案)
- 售后工程师述职报告
- 《公司法完整版》课件2024
评论
0/150
提交评论