教科版必修二 第三章万有引力定律同步测试题2025届高二上数学期末质量检测模拟试题含解析_第1页
教科版必修二 第三章万有引力定律同步测试题2025届高二上数学期末质量检测模拟试题含解析_第2页
教科版必修二 第三章万有引力定律同步测试题2025届高二上数学期末质量检测模拟试题含解析_第3页
教科版必修二 第三章万有引力定律同步测试题2025届高二上数学期末质量检测模拟试题含解析_第4页
教科版必修二 第三章万有引力定律同步测试题2025届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教科版必修二第三章万有引力定律同步测试题2025届高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于的不等式的解集为,则关于的不等式的解集为A. B.C. D.2.已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()A B.C. D.3.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.5.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次从高变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,问这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.20C.18 D.166.过点且垂直于的直线方程为()A. B.C. D.7.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切8.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.9.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定10.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或11.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B.C. D.12.在抛物线上,横坐标为4的点到焦点的距离为5,则p的值为()A. B.2C.1 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.14.已知数列中,,且数列为等差数列,则_____________.15.函数在处切线的斜率为_____16.与同一条直线都相交的两条直线的位置关系是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和18.(12分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.19.(12分)已知,,且,求实数的取值范围.20.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.21.(12分)已知函数.(I)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.22.(10分)已知圆:,定点,A是圆上的一动点,线段的垂直平分线交半径于P点(1)求P点的轨迹C的方程;(2)设直线过点且与曲线C相交于M,N两点,不经过点.证明:直线MQ的斜率与直线NQ的斜率之和为定值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设,解集为所以二次函数图像开口向下,且与交点为,由韦达定理得所以的解集为,故选B.2、B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.3、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键4、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C5、D【解析】根据题意,建立等差数列模型,结合等差数列公式求解即可.【详解】解:根据题意,设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:D.6、B【解析】求出直线l的斜率,再借助垂直关系的条件即可求解作答.【详解】直线的斜率为,而所求直线垂直于直线l,则所求直线斜率为,于是有:,即,所以所求直线方程为.故选:B7、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.8、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.9、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A10、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D11、D【解析】根据长方体中,异面直线和所成角即为直线和所成角,再结合余弦定理即可求解.【详解】解:连接、,如下图所示由图可知,在长方体中,且,所以,所以异面直线和所成角即为,又,,由余弦定理可得∶故选:D.12、B【解析】由方程可得抛物线的焦点和准线,进而由抛物线的定义可得,解之可得值【详解】解:由题意可得抛物线开口向右,焦点坐标,,准线方程,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即,解之可得.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用正四面体内任一点可将正四面体分成四个小四面体,令它们的高分别为,由体积相等即可求得;【详解】正三角形边长为a,则该三角形内任一点到三边的距离分别为,即有:,解得同理,棱长为a的正四面体内,任一点到其四个面的距离分别为,即有:,解得故答案为:【点睛】本题考查了利用空间几何体的等体积法求高的和为定值,属于简单题;14、【解析】由题意得:考点:等差数列通项15、1【解析】求得函数的导数,计算得,即可得到切线的斜率【详解】由题意,函数,则,所以,即切线的斜率为1,故答案为:116、平行,相交或者异面【解析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故答案为:平行,相交或者异面,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)求得,利用等差数列的定义可证得结论成立;(2)求出,可计算得出,利用并项求和法可求得数列的前项的和.小问1详解】解:由题意知是与的等差中项,可得,可得,则,可得,所以,,又由,可得,所以数列是首项和公差均为的等差数列.【小问2详解】解:由(1)可得:,,对任意的,,因此,.18、(1)函数在上单调递增,在上单调递减,极小值是,无极大值.(2)【解析】(1)由当,得到,求导,再由,求解;(2)将,转化为成立,令,求其最大值即可.【小问1详解】解:当时,,定义域为,所以,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,取得极小值是,无极大值.【小问2详解】因为,即成立.设,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以,即.19、.【解析】求得集合,根据,分和,两种情况讨论,结合二次函数的性质,即可求解.【详解】由题意,集合当时,即,解得,此时满足,当时,要使得,则或,当时,可得,即,此时,满足;当时,可得,即,此时,不满足,综上可知,实数的取值范围为.20、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.21、(1)(2)【解析】(Ⅰ)先求的定义域,再求,,,由直线方程的点斜式可求曲线在处的切线方程为(Ⅱ)构造新函数,对实数分类讨论,用导数法求解.试题解析:(I)定义域为.当时,,曲线在处的切线方程为(II)当时,等价于设,则,(i)当,时,,故在上单调递增,因此;(ii)当时,令得.由和得,故当时,,在单调递减,因此.综上,的取值范围是【考点】导数的几何意义,利用导数判断函数的单调性【名师点睛】求函数的单调区间的方法:(1)确定函数y=f(x)定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间22、(1);(2)证明见解析,定值为-1.【解析】(1)根据给定条件探求出,再利用椭圆定义即可得轨迹C的方程.(2)由给定条件可得直线的斜率k存在且不为0,写出直线的方程,再联立轨迹C的方程,借助韦达定理计算作答.【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论