2025届甘肃省庆阳市庆城县陇东中学高一数学第一学期期末质量检测试题含解析_第1页
2025届甘肃省庆阳市庆城县陇东中学高一数学第一学期期末质量检测试题含解析_第2页
2025届甘肃省庆阳市庆城县陇东中学高一数学第一学期期末质量检测试题含解析_第3页
2025届甘肃省庆阳市庆城县陇东中学高一数学第一学期期末质量检测试题含解析_第4页
2025届甘肃省庆阳市庆城县陇东中学高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省庆阳市庆城县陇东中学高一数学第一学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的上单调递减,则的取值范围是()A. B.C. D.2.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.3.计算器是如何计算,,,,等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如,,,其中.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的和的值也就越精确.运用上述思想,可得到的近似值为()A.0.50 B.0.52C.0.54 D.0.564.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②5.函数,则的大致图象是()A. B.C. D.6.2018年,晓文同学参加工作月工资为7000元,各种用途占比统计如下面的条形图.后来晓文同学加强了体育锻炼,目前月工资的各种用途占比统计如下面的折线图.已知目前的月就医费比刚参加工作时少200元,则目前晓文同学的月工资为A.7000 B.7500C.8500 D.95007.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.8.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.9.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x10.已知函数是定义在R上的偶函数,若对于任意不等实数,,,不等式恒成立,则不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,则a,b,c的大小关系为_________.12.函数,若为偶函数,则最小的正数的值为______13.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.14.已知角A为△ABC的内角,cosA=-4515.已知函数,若,,则的取值范围是________16.函数的定义域是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿);(2)当前,我国人口发展已经出现转折性变化,2015年10月26日至10月29日召开的党的十八届五中全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿.(参考数字:,,,)18.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围19.揭阳市某体育用品商店购进一批羽毛球拍,每件进价为100元,售价为160元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价10元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?20.已知非空集合,(1)当时,求;(2)若,求实数的取值范围21.已知二次函数满足,且的最小值是求的解析式;若关于x的方程在区间上有唯一实数根,求实数m的取值范围;函数,对任意,都有恒成立,求实数t的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题2、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C3、C【解析】根据新定义,直接计算取近似值即可.【详解】由题意,故选:C4、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.5、D【解析】判断奇偶性,再利用函数值的正负排除三个错误选项,得正确结论【详解】,为偶函数,排除BC,又时,,时,,排除A,故选:D6、C【解析】根据两次就医费关系列方程,解得结果.【详解】参加工作就医费为,设目前晓文同学的月工资为,则目前的就医费为,因此选C.【点睛】本题考查条形图以及折线图,考查基本分析判断与求解能力,属基础题.7、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题8、C【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.9、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数10、C【解析】由条件对于任意不等实数,,不等式恒成立可得函数在上为减函数,利用函数性质化简不等式求其解.【详解】∵函数是定义在R上的偶函数,∴,∴不等式可化为∵对于任意不等实数,,不等式恒成立,∴函数在上为减函数,又,∴,∴,∴不等式的解集为故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据指数函数和对数函数的单调性可得到,,,从而可比较a,b,c的大小关系.【详解】因为,,,所以.故答案为:.12、【解析】根据三角函数的奇偶性知应可用诱导公式化为余弦函数【详解】,其为偶函数,则,,,其中最小的正数为故答案【点睛】本题考查三角函数的奇偶性,解题时直接利用诱导公式分析即可13、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).14、35【解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:315、【解析】先利用已知条件,结合图象确定的取值范围,设,即得到是关于t的二次函数,再求二次函数的取值范围即可.【详解】先作函数图象如下:由图可知,若,,设,则,,由知,;由知,;故,,故时,最小值为,时,最大值为,故的取值范围是.故答案为:.【点睛】本题解题关键是数形结合,通过图象判断的取值范围,才能分别找到与相等函数值t的关系,构建函数求值域来突破难点.16、【解析】要使函数有意义,则,解得,函数的定义域是,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)15;(2)14年.【解析】(1)先判定到2020年底历经的总年数,再利用增长率列式计算即可;(2)设经过x年达16亿,列关系,解不等式即得结果.【详解】解:(1)由1995年底到2020年底,经过25年,由题知,到2020年底我国人口总数大约为(亿);(2)设需要经过x年我国人口可达16亿,由题知,两边取对数得,,即有,则需要经过14年我国人口可达16亿.18、(1)或(2)【解析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是19、(1)4800(2)将售价定为150元,最大销售利润是5000元.【解析】(1)由销售利润=单件利润×销售量,即可求商家降价前每星期的销售利润;(2)由题意得销售利润,根据二次函数的性质即可知最大销售利润及对应的售价.【小问1详解】由题意,商家降价前每星期的销售利润为(元);【小问2详解】设售价定为元,则销售利润.当时,有最大值5000∴应将售价定为150元,最大销售利润是5000元.20、(1);(2).【解析】(1)时,先解一元二次不等式,化简集合A和B,再进行交集运算即可;(2)根据子集关系列不等式,解不等式即得结果.【详解】解:(1)当时,,由,解得,,;(2)由(1)知,,解得,实数的取值范围为.21、(1)(2)(3)【解析】(1)因,故对称轴为,故可设,再由得.(2)有唯一实数根可以转化为与有唯一的交点去考虑.(3),任意都有不等式成立等价于,分、、和四种情形讨论即可.解析:(1)因,对称轴为,设,由得,所以.(2)由方程得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论