版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考物理热身梯形含解析2025届高二数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.2.若函数在上为单调减函数,则的取值范围()A. B.C. D.3.已知等差数列前项和为,若,则的公差为()A.4 B.3C.2 D.14.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A. B.C. D.5.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.6.已知的三个顶点是,,,则边上的高所在的直线方程为()A. B.C. D.7.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.8.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.59.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.10.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.11.等比数列的各项均为正数,已知向量,,且,则A.12 B.10C.5 D.12.直线的倾斜角为()A.-30° B.60°C.150° D.120°二、填空题:本题共4小题,每小题5分,共20分。13.设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______14.已知函数,若在定义域内有两个零点,那么实数a的取值范围为___________.15.若是直线外一点,为线段的中点,,,则______16.若两条直线与互相垂直,则a的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解某市家庭用电量的情况,该市统计局调查了若干户居民去年一年的月均用电量(单位:),得到如图所示的频率分布直方图.(1)估计月均用电量的众数;(2)求a的值;(3)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,月均用电量不高于平均数的为第一档,高于平均数的为第二档,已知某户居民月均用电量为,请问该户居民应该按那一档电价收费,说明理由.18.(12分)在平面直角坐标系中,已知菱形的顶点和所在直线的方程为.(1)求对角线所在直线的一般方程;(2)求所在直线的一般方程.19.(12分)如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.20.(12分)已知椭圆,离心率为,椭圆上任一点满足(1)求椭圆的方程;(2)若动直线与椭圆相交于、两点,若坐标原点总在以为直径的圆外时,求的取值范围.21.(12分)已知(1)讨论函数的单调性;(2)若函数在上有1个零点,求实数a的取值范围22.(10分)在①直线l:是抛物线C的准线;②F是椭圆的一个焦点;③,对于C上的点A,的最小值为;在以上三个条件中任选一个,填到下面问题中的横线处,并完成解答.已知抛物线C:的焦点为F,满足_____(1)求抛物线C的标准方程;(2)是抛物线C上在第一象限内的一点,直线:与C交于M,N两点,若的面积为,求m的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.2、A【解析】分析可知对任意的恒成立,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,则,当时,在上单调递减,在上单调递减,所以,,故.故选:A.3、A【解析】由已知,结合等差数列前n项和公式、通项公式列方程组求公差即可.详解】由题设,,解得.故选:A4、B【解析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B5、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.6、B【解析】求出边上的高所在的直线的斜率,再利用点斜式方程可得答案.【详解】因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.故选:B.7、B【解析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B8、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C9、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:10、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A11、C【解析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出【详解】向量=(,),=(,),且•=4,∴+=4,由等比数列的性质可得:=……===2,则log2(•)=故选C【点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题12、C【解析】根据直线斜率即可得倾斜角.【详解】设直线的倾斜角为由已知得,所以直线的斜率,由于,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据已知设直线方程为与C联立,结合|BF|=2|AF|,利用韦达定理计算可得点A,B的坐标,进而求出向量的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【详解】令直线的方程为将直线方程代入批物线C:的方程,得令且,所以由抛物线的定义知,由|BF|=2|AF|可知,,则,解得:,,则A,B两点坐标分别为,则则.故答案为:14、【解析】先求定义域,再求导,针对分类讨论,结合单调性,极值,最值得到,研究其单调性及其零点,求出结果.【详解】定义域为,,当时,恒成立,在单调递减,不会有两个零点,故舍去;当时,在上,单调递增,在上,单调递减,故,又因为时,,时,,故要想在定义域内有两个零点,则,令,,,单调递增,又,故当时,.故答案为:15、【解析】根据题意得到,进而得到,求得的值,即可求解.【详解】因为为线段的中点,所以,所以,又因为,所以,所以故答案为:.16、4【解析】两直线斜率均存在时,两直线垂直,斜率相乘等于-1,据此即可求解.【详解】由题可知,.故答案为:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)175(2)0.004(3)该居民该户居民应该按第二档电价收费,理由见解析【解析】(1)在区间对应的小矩形最高,由此能求出众数;(2)利用各个区间的频率之和为1,即可求出值;(3)求出月均用电量的平均数的估计值即可判断.【小问1详解】由题知,月均用电量在区间内的居民最多,可以将这个区间的中点175作为众数的估计值,所以众数的估计值为175.【小问2详解】由题知:,解得则的值为0.004.【小问3详解】平均数的估计值为:,则月均用电量的平均数的估计值为,又∵∴该居民该户居民应该按第二档电价收费.18、(1)(2)【解析】(1)首先求的中点,再利用垂直关系求直线的斜率,即可求解;(2)首先求点的坐标,再求直线的斜率,求得直线的斜率,利用点斜式直线方程,即可求解.【小问1详解】由和得:中点四边形为菱形,,且中点,对角线所在直线方程为:,即:.【小问2详解】由,解得:,,,,直线的方程为:,即:.19、(1)证明见解析(2)【解析】(1)接BO,由是等边三角形得,由得出,再利用线面垂直的判断定理可得平面;(2)建立以为坐标原点,分别为轴的空间直角坐标系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小问1详解】连接BO,由已知△ABC是以AC为底的等腰直角三角形,且PA=PB=PC=AC=4,O为AC的中点,则是等边三角形,,,在中,,满足,即是直角三角形,则,又,平面,所以平面.【小问2详解】建立以为坐标原点,分别为轴的空间直角坐标系如图所示,则,,,,则平面的法向量为,由已知,得到点坐标,,设平面的法向量则,令,则,即,设平面MAP与平面CAP所成角为,则,则平面MAP与平面CAP所成角为.20、(1)(2)或【解析】(1)由已知计算可得即可得出方程.(2)由已知可得联立方程,结合韦达定理计算即可得出结果.【小问1详解】依题得解得:椭圆的方程为.【小问2详解】由已知动直线与椭圆相交于、,设联立得:解得:,即:或(*)坐标原点总在以为直径的圆外则:,即将(*)代入此式,解得:,即或或21、(1)答案见解析;(2).【解析】(1)对函数求导,按a值的正负分析讨论导数值的符号计算作答.(2)求出函数的解析式并求导,再按在值的正负分段讨论推理作答.【小问1详解】函数的定义域为R,求导得:当时,当时,,当时,,则在上单调递减,在上单调递增,当时,令,得,若,即时,,则有在R上单调递增,若,即时,当或时,,当时,,则有在,上都单调递增,在上单调递减,若,即时,当或时,,当时,,则有在,上都单调递增,在上单调递减,所以,当时,上单调递减,在上单调递增,当时,在,上都单调递增,在上单调递减,当时,在R上单调递增,当时,在,上都单调递增,在上单调递减.【小问2详解】依题意,,,当时,,当时,,,则函数在上单调递增,有,无零点,当时,,,函数在上单调递减,,无零点,当时,,使得,而在上单调递增,当时,,当时,,因此,在上单调递增,在上单调递减,又,若,即时,无零点,若,即时,有一个零点,综上可知,当时,在有1个零点,所以实数a的取值范围.【点睛】思路点睛:涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.22、(1)(2)或.【解析】(1)选条件①,由准线方程得参数,从而得抛物线方程;选条件②,由椭圆的焦点坐标与抛物线焦点坐标相同求得得抛物线方程;选条件③,由F,A,B三点共线时,,再由两点间距离公式求得得抛物线方程;(2)求出点坐标,由点到直线距离公式求得到直线的距离,设,,直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车制造行业顾问工作总结
- 年产800万平方米水性超细纤维材料项目可行性研究报告写作模板-申批备案
- 2025年全球及中国建筑隔热用气凝胶行业头部企业市场占有率及排名调研报告
- 2025年全球及中国有机肥快速测定仪行业头部企业市场占有率及排名调研报告
- 2025年全球及中国实验室冷藏柜行业头部企业市场占有率及排名调研报告
- 2025年全球及中国管路无菌连接器行业头部企业市场占有率及排名调研报告
- 2025-2030全球模型实时运维系统行业调研及趋势分析报告
- 2025年全球及中国2.4GHz 无线通讯芯片行业头部企业市场占有率及排名调研报告
- 2025-2030全球金属加工磨料行业调研及趋势分析报告
- 2025-2030全球高效智能无孔包衣机行业调研及趋势分析报告
- 中国电信应急管理整体解决方案
- 中小学教师师德师风法律法规培训
- 医疗器械质量管理体系文件模板
- 秦始皇嬴政人物生平介绍PPT
- 在马克思墓前的讲话说课稿公开课一等奖市赛课获奖课件
- 骨科无痛病房的建立
- 送养收养合同协议书
- 塑料成型模具设计(第2版)江昌勇课件0-导论
- 汉语拼音发音口型及配图
- 绩效考核管理医院绩效分配方案包括实施细则考核表
- 大学成绩单(大专)
评论
0/150
提交评论