版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省昆明市云南民族大学附属中学高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若三点在同一直线上,则实数等于A. B.11C. D.32.函数的值域为()A.(0,+∞) B.(-∞,1)C.(1,+∞) D.(0,1)3.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值4.正割及余割这两个概念是由伊朗数学家阿布尔威发首先引入的.定义正割,余割.已知为正实数,且对任意的实数均成立,则的最小值为()A. B.C. D.5.下列命题中是真命题的是()A.“”是“”的充分条件B.“”是“”的必要条件C.“”是“”的充要条件D.“”是“”的充要条件6.已知A(-4,2,3)关于xOz平面的对称点为,关于z轴的对称点为,则等于()A.8 B.12C.16 D.197.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.88.某几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.9.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.10.函数的图象大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,若最大值为,最小值为,,则的取值范围是______.12.水葫芦又名凤眼莲,是一种原产于南美洲亚马逊河流域属于雨久花科,凤眼蓝属的一种漂浮性水生植物,繁殖极快,广泛分布于世界各地,被列入世界百大外来入侵种之一.某池塘中野生水葫芦的面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中,正确的是________.(填序号).13.若点在过两点的直线上,则实数的值是________.14.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______15.已知,则满足f(x)=的x的值为________16.函数的最大值为,其图象相邻两条对称轴之间的距离为(1)求函数的解析式;(2)设,且,求的值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,且当时,(1)求实数的值;(2)求函数在上的解析式;(3)若对任意实数恒成立,求实数的取值范围18.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,求实数的取值范围19.设,.(1)求的值;(2)求与夹角的余弦值.20.已知函数,函数的最小正周期为.(1)求函数的解析式,及当时,的值域;(2)当时,总有,使得,求实数m的取值范围.21.已知是定义在上的函数,满足.(1)若,求;(2)求证:的周期为4;(3)当时,,求在时的解析式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意得:解得故选2、D【解析】将函数解析式变形为,再根据指数函数的值域可得结果.【详解】,因为,所以,所以,所以函数的值域为.故选:D3、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B4、D【解析】由参变量分离法可得出,利用基本不等式可求得取值范围,即可得解.【详解】由已知可得,可得,因为,则,因为,当且仅当时,等号成立,故.故选:D.5、B【解析】利用充分条件、必要条件的定义逐一判断即可.【详解】因为是集合A的子集,故“”是“”的必要条件,故选项A为假命题;当时,则,所以“”是“”的必要条件,故选项B为真命题;因为是上的减函数,所以当时,,故选项C为假命题;取,,但,故选项D为假命题.故选:B.6、A【解析】由题可知∴故选A7、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.8、C【解析】根据三视图,作出几何体的直观图,根据题中条件,逐一求解各个面的表面积,综合即可得答案.【详解】根据三视图,作出几何体的直观图,如图所示:由题意得矩形的面积,矩形的面积,矩形的面积,正方形、的面积,五边形的面积,所以该几何体的表面积为,故选:C9、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键10、D【解析】根据函数的奇偶性可排除选项A,B;根据函数在上的单调性可排除选项C,进而可得正确选项.【详解】函数的定义域为且,关于原点对称,因为,所以是偶函数,图象关于轴对称,故排除选项A,B,当时,,由在上单调递增,在上单调递减,可得在上单调递增,排除选项C,故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先化简,然后分析的奇偶性,将的最大值和小值之和转化为和有关的式子,结合对勾函数的单调性求解出的取值范围.【详解】,令,定义域为关于原点对称,∴,∴为奇函数,∴,∴,,由对勾函数的单调性可知在上单调递减,在上单调递增,∴,,,∴,∴,故答案为:.【点睛】关键点点睛:解答本题的关键在于函数奇偶性的判断,同时需要注意到奇函数在定义域上如果有最值,那么最大值和最小值一定是互为相反数.12、①②④【解析】设且,根据图像求出,结合计算进而可判断①②③④;根据第1到第3个月、第2到第4个月的面积即可求出对应的平均速度,进而判断⑤.【详解】因为其关系为指数函数,所以可设且,又图像过点,所以.所以指数函数的底数为2,故①正确;当时,,故②正确;当y=4时,;当y=12时,;所以,故③错误;因为,所以,故④正确;第1到第3个月之间的平均速度为:,第2到第4个月之间的平均速度为:,,故⑤错误.故答案为:①②④13、【解析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【点睛】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.14、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:15、3【解析】分和两种情况并结合分段函数的解析式求出x的值【详解】由题意得(1)或(2),由(1)得x=2,与x≤1矛盾,故舍去由(2)得x=3,符合x>1∴x=3故答案为3【点睛】已知分段函数的函数值求自变量的取值时,一般要进行分类讨论,根据自变量所在的范围选用相应的解析式进行求解,求解后要注意进行验证.本题同时还考查对数、指数的计算,属于基础题16、(1)(2)【解析】(1)根据函数的最值求出,由相邻两条对称轴之间的距离为,确定函数的周期,进而求出值;(2)由,求出,利用诱导公式结合的范围求出,的值,即可求出结论.【小问1详解】函数的最大值为5,所以A+1=5,即A=4∵函数图象的相邻两条对称轴之间的距离为,∴最小正周期T=π,∴ω=2故函数的解析式为.【小问2详解】,则由,则,所以所以三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)由题利用即可求解;(2)当x<0,则﹣x>0,根据函数为奇函数f(﹣x)=﹣f(x)及当x>0时,,可得函数在x<0时的解析式,进而得到函数在R上的解析式;(3)根据奇函数在对称区间上单调性相同,结合指数函数的图象和性质,可分析出函数的单调性,进而将原不等式变形,解不等式可得实数的取值范围.【详解】解:(1)函数是定义在上的奇函数,解得(2)由(1)当,又是奇函数,(3)由及函数是定义在上的奇函数得由的图像知为R上的增函数,,【点睛】本题考查的知识点是函数奇偶性与单调性的综合,其中熟练掌握函数奇偶性的性质,及在对称区间上单调性的关系是解答本题的关键.18、(1)(2)【解析】(1)化简后由对数函数的性质求解(2)不等式恒成立,转化为最值问题求解【小问1详解】故的值域为【小问2详解】∵不等式对任意实数恒成立,∴令,∵,∴设,,当时,取得最小值,即∴,即故的取值范围为19、(1)-2;(2).【解析】(1),,所以;(2)因为,所以代值即可得与夹角的余弦值.试题解析:(1)(2)因为,,所以.20、(1),值域为(2)【解析】(1)由正弦函数的周期求得得解析式,利用正弦函数的性质可得函数值域;(2)利用时,的值域是集合的子集,分类讨论求得的最大值和最小值,得出不等关系,从而得出结论【小问1详解】,.因为,所以,所以的值域为.【小问2详解】当时,总有,使得,即时,函数的值域是的子集,即当时,.函数,其对称轴,开口向上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 进度合同书协议
- 农产品批发购销协议
- 校园内部超市销售合约
- 购销合同空白表格
- 机砖买卖购销合同
- 移动应用开发与实施合同
- 净水器使用指导服务合同
- 招标采购服务器文件
- 技术培训与技术转让合同
- 纺织品批发买卖合同
- 蓝色商务极简科技风创新发布会ppt模板
- 管理学原理第5章案例:沙漠求生游戏课件
- TCL液晶电视各机芯进工厂模式方法汇总
- 《中国古代文学史——李白》优秀PPT课件
- 物业公司客户服务部危险源清单及风险评价表
- 02-1-桥梁典型病害
- 危险化学品普查登记表(11张表)
- PDCA循环在安全管理中的应用
- 相似三角形的性质 华师大版 - 华师大版九年级上册
- ISO13485-2016培训教材PPT课件
- 解读高考物理实验命题特点和规律
评论
0/150
提交评论