




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市旬邑中学、彬州市阳光中学、彬州中学2025届高二上数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知方程表示焦点在轴上的椭圆,则实数的取值范围是()A. B.C. D.2.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是153.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定4.在中,已知角A,B,C所对的边为a,b,c,,,,则()A. B.C. D.15.函数的大致图象是()A. B.C. D.6.如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是()A.直线 B.圆C.双曲线 D.抛物线7.设为数列的前n项和,且,则=()A.26 B.19C.11 D.98.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.289.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.10.如图,在正方体ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直线l在正方形EFGH内,点E到直线l的距离记为d,记二面角为A-l-P为θ,已知初始状态下x=0,d=0,则()A.当x增大时,θ先增大后减小 B.当x增大时,θ先减小后增大C.当d增大时,θ先增大后减小 D.当d增大时,θ先减小后增大11.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺12.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.32二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则__________.14.已知直线l1:(1)x+y﹣2=0与l2:(1)x+ay﹣4=0平行,则a=_____.15.复数的实部为_________16.已知椭圆的左、右顶点分别为A,B,椭圆C的左、右焦点分别为F1,F2,点为椭圆C的下顶点,直线MA与MB的斜率之积为.(1)求椭圆C的方程;(2)设点P,Q为椭圆C上位于x轴下方的两点,且,求四边形面积的最大值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.求甲、乙两人所付滑雪费用相同的概率;18.(12分)已知函数(1)讨论的单调性:(2)若对恒成立,求的取值范围19.(12分)已知圆C经过点,,且圆心C在直线上(1)求圆C的标准方程;(2)过点向圆C引两条切线PD,PE,切点分别为D,E,求切线PD,PE的方程,并求弦DE的长20.(12分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.21.(12分)如图,在三棱柱中,平面,,.(1)求证:平面;(2)点M在线段上,且,试问在线段上是否存在一点N,满足平面,若存在求的值,若不存在,请说明理由?22.(10分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】因为方程表示焦点在轴上的椭圆,则,解得.故选:D.2、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D3、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B4、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.5、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6、D【解析】由到直线的距离等于到点的距离可得到直线的距离等于到点的距离,然后可得答案.【详解】因为到直线的距离等于到点的距离,所以到直线的距离等于到点的距离,所以动点的轨迹是以为焦点、为准线的抛物线故选:D7、D【解析】先求得,然后求得.【详解】依题意,当时,,当时,,,所以,所以.故选:D8、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C9、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A10、C【解析】以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,,求得平面AMN的法向量为,平面PMN的法向量,由空间向量的夹角公式表示出,对于A,B选项,令d=0,则,由函数的单调性可判断;对于C,D,当x=0时,则,令,利用导函数研究函数的单调性可判断.【详解】解:由题意,以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,则,所以,,设平面AMN的法向量为,则,即,令,则,设平面PMN的法向量为,则,即,令,则,,对于A,B选项,令d=0,则,显示函数在是为减函数,即减小,则增大,故选项A,B错误;对于C,D,对于给定的,如图,过作,垂足为,过作,垂足为,过作,垂足为,当在下方时,,设,则对于给定的,为定值,此时设二面角为,二面角为,则二面角为,且,故,而,故即,当时,为减函数,故为增函数,当时,为增函数,故为减函数,故先增后减,故D错误.当在上方时,,则对于给定的,为定值,则有二面角为,且,因,故为增函数,故为减函数,综上,对于给定的,随的增大而减少,故选:C.11、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B12、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【详解】解:因为在中,,,,所以由余弦定理可得,所以,即,则故答案为:14、2【解析】根据两直线平行的充要条件求解【详解】因为已知两直线平行,所以,解得故答案为:【点睛】本题考查两直线平行的充要条件,两直线平行的充要条件是,或,在均不为0时,用表示容易理解与记忆15、【解析】复数,其实部为.考点:复数的乘法运算、实部.16、(1)(2)【解析】(1)由斜率之积求得,再由已知条件得,从而得椭圆方程;(2)延长QF2交椭圆于N点,连接,,设直线,,.直线方程代入椭圆方程,应用韦达定理得,结合不等式的性质、函数的单调性可得的范围,再计算出四边形面积得结论【小问1详解】由题知:,,,又,∴椭圆.【小问2详解】延长QF2交椭圆于N点,连接,,如下图所示:,∴设直线,,.由,得,,,.,由勾形函数的单调性得,根据对称性得:,且,,∴四边形面积的最大值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】甲、乙两人所付费用相同即为、、,求出相应的概率,利用互斥事件的概率公式,可求出甲、乙两人所付费用相同的概率;【详解】两人所付费用相同,相同费用可能为0,40,80元,两人都付0元的概率为,两人都付40元的概率为,两人都付80元的概率为,故两人所付费用相同的概率为.18、(1)答案不唯一,具体见解析(2)【解析】(1)求导得,在分,两种情况讨论求解即可;(2)根据题意将问题转化为对恒成立,进而构造函数,求解函数最值即可.【小问1详解】解:函数的定义域为,当时,令,得,令,得;当时,令,得,令,得综上,当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】解:由(1)知,函数在上单调递增,则,所以对恒成立等价于对恒成立设函数,则,设,则,则在上单调递减,所以,则,所以在上单调递减,所以;故,即的取值范围是19、(1)(2)或,【解析】(1)设圆心,根据圆心在直线上及圆过两点建立方程求解即可;(2)分切线的斜率存在与不存在分类讨论,利用圆心到切线的距离等于半径求解,再根据圆的切线的几何性质求弦长即可.【小问1详解】设圆心,因为圆心C在直线上,所以①因为A,B是圆上的两点,所以,所以,即②联立①②,解得,所以圆C的半径,所以圆C的标准方程为【小问2详解】若过点P的切线斜率不存在,则切线方程为若过点P的切线斜率存在,设为k,则切线方程为,即由,解得,所以切线方程为综上,过点P的圆C的切线方程为或设PC与DE交于点F,因为,,PC垂直平分DE,所以,所以所以20、(1)(2)证明见解析【解析】(1)设点,由即所以化简即可得到答案.(2)设,,设直线l的方程为:与(1)中W的轨迹方程联立,得出韦达定理,求出,同理设直线的方程为:,得出,再根据从而可证明结论.【小问1详解】设点,因为,所以,因为,所以所以所以所以所以C的方程为:【小问2详解】设,,设直线l的方程为:,则由得:所以,,所以所以设直线的方程为:,则同理可得因所以即,即,即解得,即所以为定值.21、(1)证明见解析;(2)存在,的值为.【解析】(1)先证明,再证明,由线面垂直的判定定理求证即可;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,求出平面的法向量,由平面,利用向量法能求出的值【详解】(1)在三棱柱中,平面ABC,,.∴,,,∵,∴平面,∵平面,∴,∵,∴平面.(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字乡村与绿色乡村的协同发展及其影响因素
- 四川雅安名山区招社区专职招聘笔试真题2024
- 互联网+时代高校课程资源的建设与实践
- 2024年池州市东至县总医院招聘专业技术人员真题
- 人才引进与培养机制在国有企业中的创新路径
- 智能家居技术对能源消费的影响
- 城市规划与建筑设计对噪声污染的影响与应对
- 修改车间管理制度
- 公司24条管理制度
- 公司宣传部管理制度
- 2025届高三语文最后一课
- 中国数据中心产业发展白皮书023年
- 创新创业创造:职场竞争力密钥智慧树知到期末考试答案章节答案2024年上海对外经贸大学
- 医院检验科实验室生物安全程序文件SOP
- 中外古典园林史-南京林业大学中国大学mooc课后章节答案期末考试题库2023年
- 装修工程承包合同中英文
- 药物临床试验的伦理审查课件
- 现代火电机组AGC控制问题的解决平台--INFIT
- EHS目标与指标管理一览表
- L等级考试LTE无线网络优化L3
- 有关建立《涉农贷款专项统计制度》的通知(doc 72页)
评论
0/150
提交评论