2025届浙江省宁波市金兰教育合作组织高二数学第一学期期末质量检测试题含解析_第1页
2025届浙江省宁波市金兰教育合作组织高二数学第一学期期末质量检测试题含解析_第2页
2025届浙江省宁波市金兰教育合作组织高二数学第一学期期末质量检测试题含解析_第3页
2025届浙江省宁波市金兰教育合作组织高二数学第一学期期末质量检测试题含解析_第4页
2025届浙江省宁波市金兰教育合作组织高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省宁波市金兰教育合作组织高二数学第一学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线C的方程为,则下列结论正确的是()A.当时,曲线C为圆B.“”是“曲线C为焦点在x轴上的双曲线”的充分而不必要条件C.“”是“曲线C为焦点在x轴上的椭圆”的必要而不充分条件D.存在实数k使得曲线C为双曲线,其离心率为2.四棱锥中,底面ABCD是平行四边形,点E为棱PC的中点,若,则等于()A.1 B.C. D.23.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形4.圆关于直线l:对称的圆的方程为()A. B.C. D.5.命题“,”否定是()A., B.,C., D.,6.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切7.()A. B.C. D.8.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.29.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.210.设为空间中的四个不同点,则“中有三点在同一条直线上”是“在同一个平面上”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件11.在各项均为正数的等比数列中,若,则()A.6 B.12C.56 D.7812.若,都为正实数,,则的最大值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一条渐近线被圆所截得的弦长为2,则该双曲线的实轴长为______.14.狄利克雷是十九世纪德国杰出的数学家,对数论、数学分析和数学物理有突出贡献.狄利克雷曾提出了“狄利克雷函数”.若,根据“狄利克雷函数”可求___________.15.若和或都是假命题,则的范围是__________16.已知双曲线的左、右焦点分别为,,点是圆上一个动点,且线段的中点在的一条渐近线上,若,则的离心率的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}的首项a1=1,且an+1=(n∈N*).(1)证明:数列是等比数列;(2)设bn=-,求数列{bn}的前n项和Sn.18.(12分)已知,2,4,6中的三个数为等差数列的前三项,且100不在数列中,102在数列中.(1)求数列的通项;(2)设,求数列的前项和.19.(12分)如图,在四棱锥中中,平面ABCD,底面ABCD是边长为2的正方形,.(1)求证:平面;(2)求二面角的平面角的余弦值.20.(12分)如图所示,平面ABCD,四边形AEFB为矩形,,,(1)求证:平面ADE;(2)求平面CDF与平面AEFB所成锐二面角的余弦值21.(12分)二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.22.(10分)如图,在直四棱柱中,(1)求二面角的余弦值;(2)若点P为棱的中点,点Q在棱上,且直线与平面所成角的正弦值为,求的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据椭圆、双曲线的定义及简单几何性质计算可得;【详解】解:由题意,曲线C的方程为,对于A中,当时,曲线C的方程为,此时曲线C表示椭圆,所以A错误;对于B中,当曲线C的方程为表示焦点在x轴上的双曲线时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以B不正确;对于C中,当曲线C的方程为表示焦点在x轴上的椭圆时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以C正确;对于D中,当曲线C的方程为表示双曲线,且离心率为时,此时双曲线的实半轴长等于虚半轴长,此时,解得,此时方程表示圆,所以不正确.故选:C.2、B【解析】运用向量的线性运用表示向量,对照系数,求得,代入可得选项.【详解】因为,所以,所以,所以,解得,所以,故选:B.3、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.4、A【解析】首先求出圆的圆心坐标与半径,再设圆心关于直线对称的点的坐标为,即可得到方程组,求出、,即可得到圆心坐标,从而求出对称圆的方程;【详解】解:圆的圆心为,半径,设圆心关于直线对称的点的坐标为,则,解得,即圆关于直线对称的圆的圆心为,半径,所以对称圆的方程为;故选:A5、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.6、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在7、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.8、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B9、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.10、A【解析】由公理2的推论即可得到答案.【详解】由公理2的推论:过一条直线和直线外一点,有且只有一个平面,可得在同一平面,故充分条件成立;由公理2的推论:过两条平行直线,有且只有一个平面,可得,当时,同一个平面上,但中无三点共线,故必要条件不成立;故选:A【点睛】本题考查点线面的位置关系和充分必要条件的判断,重点考查公理2及其推论;属于中档题;公理2的三个推论:经过一条直线和直线外一点,有且只有一个平面;经过两条平行直线,有且只有一个平面;经过两条相交直线,有且只有一个平面;11、D【解析】由等比数列的性质直接求得.【详解】在等比数列中,由等比数列的性质可得:由,解得:;由可得:,所以.故选:D12、B【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a,b的关系,即可得到的值【详解】一渐近线x+ay=0,被圆(x-2)2+y2=4所截弦长为2,所以圆心到直线距为,即,a=1.所以双曲线的实轴长为2.故答案为:14、1【解析】由“狄利克雷函数”解析式,先求出,再根据指数函数的解析式求即可.【详解】由题设,,则.故答案:115、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:16、【解析】设,,因为点是线段中点,所以有,代入坐标求出点的轨迹为圆,因为点在渐近线上,所以圆与渐近线有公共点,利用点到直线的距离求出临界状态下渐近线的斜率,数形结合求出有公共点时渐近线斜率的范围,从而求出离心率的范围.【详解】解:设,,因为点是线段的中点,所以有,即有,因为点在圆上,所以满足:,代入可得:,即,所以点的轨迹是以为圆心,以1为半径的圆,如图所示:因为点在渐近线上,所以圆与渐近线有公共点,当两条渐近线与圆恰好相切时为临界点,则:圆心到渐近线的距离为,因为,所以,即,且,所以,此时,,当时,渐近线与圆有公共点,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)2-.【解析】(1)根据递推公式,得到,推出,即可证明数列是等比数列;(2)先由(1)求出,即bn=,再错位相减法,即可求出数列的和.【小问1详解】(1)证明:因为an+1=,所以==+,所以-=-=,又a1-≠0,所以数列为以-=为首项,为公比的等比数列.【小问2详解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.18、(1)(2)【解析】(1)确定数列为递增数列,然后由4个数确定等差数列,得通项公式,验证100和102是否为数列中的项得结论;(2)由裂项相消法求和【小问1详解】首先数列是递增数列,当2,4,6为的前三项时,易知此时,100,102都是该数列中的项,不满足题意当,2,6为的前三项时,易知此时,100不是该数列中的项,102是该数列中的项,满足题意所以【小问2详解】因为所以所以.19、(1)证明见解析(2)【解析】(1)根据平面得到,结合得到证明。(2)建立空间直角坐标系,计算各点坐标,计算平面的法向量,根据向量的夹角公式得到答案。【小问1详解】由于平面,平面,所以,由于,又,所以平面【小问2详解】两两垂直,建立如图所示空间直角坐标系,,,,,,设平面的一个法向量为设平面的一个法向量为,由,得,故可取所以所以二面角的平面角的余弦值20、(1)见解析(2)【解析】(1)根据,,从而证明平面平面ADE,从而平面ADE。(2)以A为坐标原点,建立空间直角坐标系,写出点的空间坐标,根据向量法求解即可。【详解】(1)∵四边形ABEF为矩形又平面ADE,AE平面ADE平面ADE又,同理可得:平面ADE又,BF,BC平面BCF∴平面平面ADE又CF平面BCF平面ADE(2)如图,以A为坐标原点,建立空间直角坐标系,则,,,,设是平面CDF的一个法向量,则即令,解得又是平面AEFB的一个法向量,∴平面CDF与平面AEFB所成锐二面角的余弦值为.【点睛】此题考查立体几何线面平行证明和二面角求法,线面平行可先证面面平行得到,属于简单题目。21、(1)6;(2),,【解析】(1)先得到二项展开式的通项,再根据第五项的二项式系数是第三项系数的4倍,建立方程求解.(2)根据(1)的通项公式求解.【详解】(1)二项展开式的通项.依题意得,,所以,解得.(2)由(1)得,当,3,6时为有理项,故有理有,,.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.22、(1),(2)【解析】(1)推导出,以A为原点,分别以,,所在的直线为轴,轴,轴,建立如图所示的空间直角坐标系,利用空间向量求二面角的余弦值;(2)设,则,求出平面的法向量,利用空间向量求出的长【详解】解(1)在直四棱柱中,因为平面,平面,平面,所以因为,所以以A为原点,分别以,,所在的直线为轴,轴,轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论