广西柳州市融水中学2025届高一数学第一学期期末联考模拟试题含解析_第1页
广西柳州市融水中学2025届高一数学第一学期期末联考模拟试题含解析_第2页
广西柳州市融水中学2025届高一数学第一学期期末联考模拟试题含解析_第3页
广西柳州市融水中学2025届高一数学第一学期期末联考模拟试题含解析_第4页
广西柳州市融水中学2025届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西柳州市融水中学2025届高一数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.2.已知集合A={1,2,3,4},B={x∈R|0<x-1<3},则A∩B=()A. B.{2,3}C.{1,2,3} D.{2,3,4}3.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.4.若圆上有且仅有两个点到直线的距离等于1,则半径的取值范围是()A. B.C. D.5.下列函数中,图象的一部分如图所示的是()A. B.C. D.6.已知等比数列满足,,则()A. B.C. D.7.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.8.已知实数,满足,,则的最大值为()A. B.1C. D.29.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.10.是边AB上的中点,记,,则向量A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知任何一个正实数都可以表示成,则的取值范围是________________;的位数是________________.(参考数据)12.一个底面积为1的正四棱柱的八个顶点都在同一球面上,若这个正四棱柱的高为,则该球的表面积为__________13.正三棱柱的侧面展开图是边长为6和12的矩形,则该正三棱柱的体积是_____.14.已知集合,,则=______15.设函数和函数,若对任意都有使得,则实数a的取值范围为______16.若,,则等于_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(Ⅰ)对任意的实数,恒有成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当实数取最小值时,讨论函数在时的零点个数.18.设是定义在上的奇函数,且当时,.(1)求当时,的解析式;(2)请问是否存在这样的正数,,当时,,且的值域为?若存在,求出,的值;若不存在,请说明理由.19.素有“天府之国”美称的四川省成都市,属于亚热带季风性湿润气候.据成都市气象局多年的统计资料显示,成都市从1月份到12月份的平均温(℃)与月份数(月)近似满足函数,从1月份到7月份的月平均气温的散点图如下图所示,且1月份和7月份的平均气温分别为成都全年的最低和最高的月平均气温.(1)求月平均气温(℃)与月份数(月)的函数解析式;(2)推算出成都全年月平均气温低于但又不低于的是哪些月份.20.在三棱锥中,平面平面,,,分别是棱,上的点(1)为的中点,求证:平面平面.(2)若,平面,求的值.21.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题2、B【解析】求解一元一次不等式化简,再由交集运算得答案【详解】解:,2,3,,,,2,3,,故选:3、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C4、C【解析】圆上有且仅有两个点到直线的距离等于1,先求圆心到直线的距离,再求半径的范围【详解】解:圆的圆心坐标,圆心到直线的距离为:,又圆上有且仅有两个点到直线的距离等于1,满足,即:,解得故半径的取值范围是,(如图)故选:【点睛】本题考查直线与圆的位置关系,考查数形结合的数学思想,属于中档题5、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D6、C【解析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.7、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B8、C【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C9、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.10、C【解析】由题意得,∴.选C二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据对数函数的单调性及对数运算、对数式指数式的转化即可求解.【详解】因为,所以,由,故知,共有31位.故答案为:;3112、【解析】底面为正方形,对角线长为.故圆半径为,故球的表面积为.【点睛】本题主要考查几何体的外接球问题.解决与几何体外接球有关的数学问题时,主要是要找到球心所在的位置,并计算出球的半径.寻找球心的一般方法是先找到一个面的外心,如本题中底面正方形的中心,球心就在这个外心的正上方,根据图形的对称性,易得球心就在正四棱柱中间的位置.13、或【解析】分两种情况来找三棱柱的底面积和高,再代入体积计算公式即可【详解】因为正三棱柱的侧面展开图是边长分别为6和12的矩形,所以有以下两种情况,①6是下底面的周长,12是三棱柱的高,此时,下底面的边长为2,面积为,所以正三棱柱的体积为12②12是下底面的周长,6是三棱柱的高,此时,下底面的边长为4,面积为,所以正三棱柱的体积为24,故答案为或【点睛】本题的易错点在于只求一种情况,应该注意考虑问题的全面性.分类讨论是高中数学的常考思想,在运用分类讨论思想做题时,要做到不重不漏14、{-1,1,2};【解析】=={-1,1,2}15、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题16、【解析】由同角三角函数基本关系求出的值,再由正弦的二倍角公式即可求解.【详解】因为,,所以,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)见解析.【解析】(Ⅰ)由可知,区间是不等式解集的子集,由此可得出实数的不等式,解出即可;(Ⅱ)由题意可知,,则,令,可得出,令,对实数的取值范围进行分类讨论,先讨论方程的根的个数及根的范围,进而得出方程的根个数,由此可得出结论.【详解】(Ⅰ),,对任意的实数,恒有成立,则区间是不等式解集的子集,,解得,因此,实数的取值范围是;(Ⅱ),由题意可知,,,令,得,令,则,作出函数和函数在时的图象如下图所示:作出函数在时的图象如下图所示:①当或时,即当或时,方程无实根,此时,函数无零点;②当时,即当时,方程根为,而方程在区间上有两个实根,此时,函数有两个零点;③当时,即当时,方程有两根、,且,,方程在区间上有两个实根,方程在区间上有两个实根,此时,函数有四个零点;④当时,即当时,方程有两根分别为、,方程在区间上只有一个实根,方程在区间上有两个实根,此时,函数有三个零点;⑤当时,即当时,方程只有一个实根,且,方程在区间上有两个实根,此时,函数有两个零点;⑥当时,即当时,方程只有一个实根,方程在区间上只有一个实根,此时,函数只有一个零点.综上所述,当或时,函数无零点;当时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点;当时,函数有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.18、(1)当时,(2),【解析】(1)根据函数的奇偶性,求解解析式即可;(2)根据题意,结合函数单调性,将问题转化为是方程的两个根的问题,进而解方程即可得答案.【详解】(1)当时,,于是.因为是定义在上的奇函数,所以,即.(2)假设存在正实数,当时,且的值域为,根据题意,,因为,则,得.又函数在上是减函数,所以,由此得到:是方程的两个根,解方程求得所以,存在正实数,当时,且的值域为19、(1).(2)3月、4月、9月、10月【解析】(1)利用五点法求出函数解析式;(2)解不等式可得结论【详解】(1)由题意,,,,又,而,∴∴(2)由,解得或或,又,∴3,4,9,10∴全年月平均气温低于但又不低于的是3月、4月、9月、10月【点睛】方法点睛:本题三角函数应用,解题关键是根据已知函数模型求出函数解析式,掌握五点法是解题基础,然后根据函数解析式列式(方程或不等式)计算求解20、(1)证明见解析;(2)【解析】(1)根据等腰三角形的性质,证得,由面面垂直的性质定理,证得平面,进而证得平面平面.(2)根据线面平行的性质定理,证得,平行线分线段成比例,由此求得的值.【详解】(1),为的中点,所以.又因为平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查线面平行的性质定理,考查空间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论